Random Number Generators

@ Historically there are three types of generators
¢ table look-up generators
@ hardware generators
s algorithmic (software) generators

@ Algorithmic generators are widely accepted because they meet
all of the following criteria:

@ randomness - output passes all reasonable statistical tests of
randomness

o controllability - able to reproduce output, if desired

o portability - able to produce the same output on a wide variety
of computer systems

o efficiency - fast, minimal computer resource requirements

o documentation - theoretically analyzed and extensively tested
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Algorithmic Generators

@ An ideal random number generator produces output such that
each value in the interval 0.0 < v < 1.0 is equally likely to
occur

@ A good random number generator produces output that is
(almost) statistically indistinguishable from an ideal generator

@ We will construct a good random number generator satisfying
all our criteria
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Conceptual Model

@ Conceptual Model:
o Choose a large positive integer m. This defines the set
Xm={1,2,...,m—1}
@ Fill a (conceptual) urn with the elements of X,
¢ Each time a random number u is needed, draw an integer x
“at random” from the urn and let u = x/m
@ Each draw simulates a sample of an independent identically
distributed sequence of Uniform(0, 1)

@ The possible values are 1/m,2/m,...(m—1)/m.

@ It is important that m be large so that the possible values are
densely distributed between 0.0 and 1.0
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Conceptual Model

@ 0.0 and 1.0 are impossible

@ This is important for some random variates
@ We would like to draw from the urn with replacement
@ For practical reasons, we will draw without replacement

o If mis large and the number of draws is small relative to m,
then the distinction is largely irrelevant
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Lehmer's Algorithm

@ Lehmer's algorithm for random number generation is defined
in terms of two fixed parameters:
o modulus m, a fixed large prime integer
o multiplier a, a fixed integer in X,

@ The integer sequence xp, X1, - . . is defined by the iterative
equation
Xi+1 = g(xi)
with

g(x) = ax mod m

@ xg € X is called the initial seed
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Let m = 13. Calculate the sequence
Xi+1 = ax; mod m

in your learning group.



Let m = 13. Calculate the sequence
Xi+1 = ax; mod m

in your learning group.

Outliers: a=5andxp =1

AskAl: a=T7andxy=1

Crosswalk Crusaders: a—=5andxg =4
Jonah’s Group: a=6andxg=1

: a=5andxy=2

a=9and xg =3



Let m = 13. Calculate the sequence
Xi+1 = ax; mod m

in your learning group.

Outliers: a=5andxp =1

AskAl: a=T7andxy=1

Crosswalk Crusaders: a—=5andxg =4
Jonah’s Group: a=6andxg=1

: a=5andxy=2

a=9and xg =3

Congrats, you are all pPRNGs. What you see are the cyclic periods of various as, finding an
a with big cycles (large periods, p) is important for good pRNGs.



Example 2.1.2

@ Full-period multipliers generate a virtual circular list with
m — 1 distinct elements.
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Parameter Considerations

@ The choice of m is dictated, in part, by system considerations
@ On a system with 32-bit 2's complement integer arithmetic,
231 — 1 is a natural choice
o With 16-bit or 64-bit integer representation, the choice is not
obvious
¢ In general, we want to choose m to be the largest
representable prime integer

@ Given m, the choice of a must be made with great care
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Central Issues

@ For a chosen (a, m) pair, does the function g(-) generate a
full-period sequence?
@ If a full period sequence is generated, how random does the
sequence appear to be?
@ Can ax mod m be evaluated efficiently and correctly?
¢ Integer overflow can occur when computing ax
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Sshhh! It’s a Secret Expression

We can think of the Lehmer generator equation as a simplification (n = 1) of the following
form

y=I(a,x;,n,m) = ax] mod m|,_,

This equation may look familiar to you. If a = 1 it’s the fundamental equation that several different
PKI (public key cryptography) algorithms use. Namely, our inability to devise an inverse (called
the discrete log)

xi =1"(y,a,n,m)

is what gives (non-elliptic curve) public key algorithms (part of) their strength (the other is very
large numbers).

Crypto systems don’t use this equation for their pPRNG — crypto systems need random bit values.
Lehmer generatators are not good enough for that. In general crypto systems DON’T use pRNGs
designed for simulation.



Given a Lehmer based pRNG:
» m a prime number

» a the multiplier in the generating equation

Xi+1 = ax; mod m

How do m and a affect the features of the pRNG?

When a programmer chooses a “seed”, what is actually being chosen?



Given a Lehmer based pRNG:
» m a prime number
m dictates two things: the maximum number of values in the set (“urn”) ,,, and (based on
the prime factorization of m — 1) how many full period modifiers (the a’s) exist for the values
in Y-
» a the multiplier in the generating equation

Xi+1 = ax; mod m

a dictates two things: the specific size of the random sequence (its period) and the actual
sequence of the values x;. We want the size to be big, like m — 1, but not all multipliers will do
this.

How do m and a affect the features of the pRNG?

When a programmer chooses a “seed”, what is actually being chosen? The programmer is
choosing xjy, that specifies the starting point in the sequence of random values dictated by a.



Randomness

@ Choose the FPMC multiplier that gives "most random”
sequence

@ No universal definition of randomness

@ In 2-space, (xo, x1), (x1,x2), (x2,%3), ... form a lattice
structure

@ For any integer k > 2, the points

(X07X17 o 7Xk—1)7 (X17X27 ... 7Xk)7 (X27X37 o 7Xk+1)7 o

form a lattice structure in k-space
@ Numerically analyze uniformity of the lattice
E.g., Knuth's spectral test
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Random Numbers Falling In The Planes
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