Random Number Generators

- Historically there are three types of generators
 - table look-up generators
 - hardware generators
 - algorithmic (software) generators
- Algorithmic generators are widely accepted because they meet all of the following criteria:
 - randomness output passes all reasonable statistical tests of randomness
 - controllability able to reproduce output, if desired
 - portability able to produce the same output on a wide variety of computer systems
 - efficiency fast, minimal computer resource requirements
 - documentation theoretically analyzed and extensively tested

Algorithmic Generators

- An *ideal* random number generator produces output such that *each* value in the interval 0.0 < u < 1.0 is *equally likely* to occur
- A good random number generator produces output that is (almost) statistically indistinguishable from an ideal generator
- We will construct a good random number generator satisfying all our criteria

Conceptual Model

- Conceptual Model:
 - Choose a *large* positive integer m. This defines the set $\mathcal{X}_m = \{1, 2, \dots, m-1\}$
 - ullet Fill a (conceptual) urn with the elements of \mathcal{X}_m
 - Each time a random number u is needed, draw an integer x "at random" from the urn and let u=x/m
- Each draw simulates a sample of an independent identically distributed sequence of Uniform(0,1)
- The possible values are $1/m, 2/m, \dots (m-1)/m$.
- ullet It is important that m be large so that the possible values are densely distributed between 0.0 and 1.0

Conceptual Model

- 0.0 and 1.0 are impossible
 - This is important for some random variates
- We would like to draw from the urn with replacement
- For practical reasons, we will draw without replacement
 - If m is large and the number of draws is small relative to m, then the distinction is largely irrelevant

Lehmer's Algorithm

- Lehmer's algorithm for random number generation is defined in terms of two fixed parameters:
 - modulus m, a fixed large prime integer
 - ullet multiplier a, a fixed integer in \mathcal{X}_m
- The integer sequence x_0, x_1, \ldots is defined by the iterative equation

$$x_{i+1} = g(x_i)$$

with

$$g(x) = ax \mod m$$

• $x_0 \in \mathcal{X}_m$ is called the *initial seed*

Let m = 13. Calculate the sequence

$$x_{i+1} = ax_i \mod m$$

in your learning group.

Let m = 13. Calculate the sequence

$$x_{i+1} = ax_i \mod m$$

in your learning group.

Outliers:
$$a = 5$$
 and $x_0 = 1$

AskAI:
$$a = 7$$
 and $x_0 = 1$

Crosswalk Crusaders :
$$a = 5$$
 and $x_0 = 4$

Jonah's Group :
$$a = 6$$
 and $x_0 = 1$

:
$$a = 5$$
 and $x_0 = 2$

:
$$a = 9$$
 and $x_0 = 3$

Let m = 13. Calculate the sequence

$$x_{i+1} = ax_i \mod m$$

in your learning group.

Outliers: a = 5 and $x_0 = 1$

AskAI: a = 7 and $x_0 = 1$

Crosswalk Crusaders : a = 5 and $x_0 = 4$

Jonah's Group : a = 6 and $x_0 = 1$

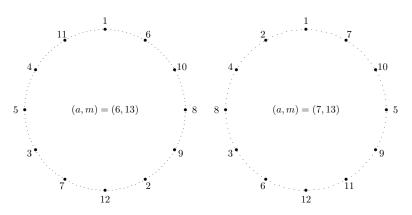
: a = 5 and $x_0 = 2$

: a = 9 and $x_0 = 3$

Congrats, you are all pRNGs. What you see are the cyclic periods of various as, finding an a with big cycles (large periods, ρ) is important for good pRNGs.

Example 2.1.2

• Full-period multipliers generate a virtual *circular list* with m-1 distinct elements.



Parameter Considerations

- \bullet The choice of m is dictated, in part, by system considerations
 - On a system with 32-bit 2's complement integer arithmetic, $2^{31}-1$ is a natural choice
 - With 16-bit or 64-bit integer representation, the choice is not obvious
 - In general, we want to choose *m* to be the largest representable prime integer
- Given m, the choice of a must be made with great care

Central Issues

- For a chosen (a, m) pair, does the function $g(\cdot)$ generate a full-period sequence?
- If a full period sequence is generated, how random does the sequence appear to be?
- Can ax mod m be evaluated efficiently and correctly?
 - Integer overflow can occur when computing ax

Sshhh! It's a Secret Expression

We can think of the Lehmer generator equation as a simplification (n = 1) of the following form

$$y = l(a, x_i, n, m) = ax_i^n \bmod m|_{n=1}$$

This equation may look familiar to you. If a=1 it's the fundamental equation that several different PKI (public key cryptography) algorithms use. Namely, our inability to devise an inverse (called the *discrete log*)

$$x_i = l^*(y, a, n, m)$$

is what gives (non-elliptic curve) public key algorithms (part of) their strength (the other is very large numbers).

Crypto systems don't use this equation for their pRNG — crypto systems need random *bit values*. Lehmer generatators are not good enough for that. In general crypto systems DON'T use pRNGs designed for simulation.

Given a Lehmer based pRNG:

m a prime number

• a the multiplier in the generating equation

$$x_{i+1} = ax_i \mod m$$

How do *m* and *a* affect the features of the pRNG?

When a programmer chooses a "seed", what is actually being chosen?

Given a Lehmer based pRNG:

- ▶ m a prime number m dictates **two things**: the maximum number of values in the set ("urn") χ_m , and (based on the prime factorization of m-1) how many full period modifiers (the a's) exist for the values in χ_m .
- a the multiplier in the generating equation

$$x_{i+1} = ax_i \mod m$$

a dictates **two things**: the *specific* size of the random sequence (its *period*) and the actual sequence of the values x_i . We want the size to be big, like m-1, but not all multipliers will do this.

How do *m* and *a* affect the features of the pRNG?

When a programmer chooses a "seed", what is actually being chosen? The programmer is choosing x_0 , that specifies the starting point in the sequence of random values dictated by a.

Randomness

- Choose the FPMC multiplier that gives "most random" sequence
- No universal definition of randomness
- In 2-space, $(x_0, x_1), (x_1, x_2), (x_2, x_3), \ldots$ form a *lattice* structure
- For any integer $k \ge 2$, the points

$$(x_0, x_1, \ldots, x_{k-1}), (x_1, x_2, \ldots, x_k), (x_2, x_3, \ldots, x_{k+1}), \ldots$$

form a lattice structure in k-space

Numerically analyze uniformity of the lattice
E.g., Knuth's spectral test

Random Numbers Falling In The Planes

