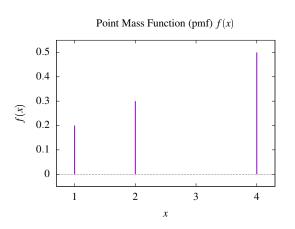
Statistics from Discrete Data Histograms



What is \bar{x} and s (standard deviation) of this data?

Statistics from Discrete Data Histograms

Point Mass Function (pmf) f(x)0.5 0.4 0.3 0.2 0.1 0 3 4 x

What is \bar{x} and s (standard deviation) of this data?

$$\bar{x} = \sum_{x_i} x_i f(x)$$

$$= 1(0.2) + 2(0.3) + 3(0) + 4(0.5)$$

$$= 2\frac{13}{15} \approx 2.8\bar{6}$$

$$s^2 = \sum_{x_i} (x_i - \bar{x})^2 f(x)$$

$$= (1 - \bar{x})^2 (0.2) + (2 - \bar{x})^2 (0.3) + (3 - \bar{x})^2 (0) + (4 - \bar{x})^2 (0.5)$$

$$= 1.56\bar{4}$$

$$s = \sqrt{s^2} \approx 1.251$$

Recall that a **discrete data histogram**:

- ▶ is an approximation of the *point mass function* for the underlying distribution
- ▶ the average and standard deviation (\bar{x}, s) of a discrete data histogram are the **same** as the average and standard deviation of the sample itself probably not the same as the underlying distribution (due to sampling).

Section 4.3: Continuous-Data Histograms

- Consider a real-valued sample $S = \{x_1, x_2, \dots, x_n\}$
- Data values are generally distinct
- Assume lower and upper bounds a, b

$$a \le x_i < b \qquad \qquad i = 1, 2, \dots, n$$

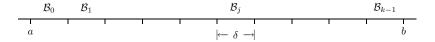
Defines interval of possible values for random variable X

$$\mathcal{X} = [a, b) = \{x \mid a \le x < b\}$$

Binning

• Partition the interval $\mathcal{X} = [a, b)$ into k equal-width bins

$$[a,b) = \bigcup_{j=0}^{k-1} \mathcal{B}_j = \mathcal{B}_0 \cup \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_{k-1}$$



- The bins are $\mathcal{B}_0 = [a, a + \delta)$, $\mathcal{B}_1 = [a + \delta, a + 2\delta) \dots$
- Width of each bin is $\delta = (b a)/k$

Continuous Data Histogram

- For each $x \in [a, b)$, there is a unique bin \mathcal{B}_j with $x \in \mathcal{B}_j$
- Estimated density of random variable X is

$$\hat{f}(x) = \frac{\text{the number of } x_i \in \mathcal{S} \text{ for which } x_i \in \mathcal{B}_j}{n \, \delta}$$

- Continuous-data histogram: a "bar" plot of $\hat{f}(x)$ versus x
- ullet Density: relative frequency normalized via division by δ
- $\hat{f}(x)$ is piecewise constant

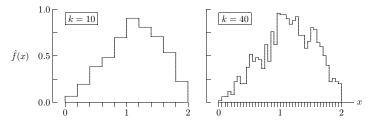
Histogram Parameter Guidelines

- Choose a, b so that few, if any, data points are outliers
- If k is too large (δ is too small), histogram will be "noisy"
- If k is too small (δ is too large), histogram will be too "smooth"
- Keep figure aesthetics in mind
- Typically $\lfloor \log_2(n) \rfloor \le k \le \lfloor \sqrt{n} \rfloor$ with a bias toward

$$k \cong \lfloor (5/3)\sqrt[3]{n} \rfloor$$

Example 4.3.2: Smooth, Noisy Histograms

- k=10 ($\delta=0.2$) gives perhaps too smooth a histogram
- $k = 40 \ (\delta = 0.05)$ gives too noisy a histogram



- Guidelines: $9 \le k \le 31$ with bias toward $k \cong \lfloor (5/3)\sqrt[3]{1000} \rfloor = 16$
- Note no vertical lines to horizontal axis

Relative Frequency

- Define p_j to be the *relative frequency* of points in bin \mathcal{B}_j
- Define the bin midpoints

$$m_j = a + \left(j + rac{1}{2}
ight)\delta \qquad j = 0, 1, \ldots, k-1$$

- Then $p_j = \delta \hat{f}(m_j)$
- Note that $p_0+p_1+\cdots+p_{k-1}=1$ and $\hat{f}(\cdot)$ has unit area

$$\int_a^b \hat{f}(x)dx = \dots = \sum_{i=0}^{k-1} p_i = 1$$

Histogram Integrals

Consider the two integrals

$$\int_{a}^{b} x \hat{f}(x) dx \qquad \qquad \int_{a}^{b} x^{2} \hat{f}(x) dx$$

• Because $\hat{f}(\cdot)$ is piecewise constant, integrals become summations

$$\int_a^b x \hat{f}(x) dx = \dots = \sum_{j=0}^{k-1} m_j p_j$$

$$\int_{a}^{b} x^{2} \hat{f}(x) dx = \dots = \left(\sum_{j=0}^{k-1} m_{j}^{2} p_{j} \right) + \frac{\delta^{2}}{12}$$

 Continuous-data histogram mean, standard deviation are defined in terms of these integrals

Histogram Mean and Standard Deviation

Continuous-data histogram mean and standard deviation:

$$\bar{x} = \int_a^b x \hat{f}(x) dx$$
 $s = \sqrt{\int_a^b (x - \bar{x})^2 \hat{f}(x) dx}$

 \bullet \bar{x} and s can be evaluated *exactly* by summation

$$\bar{x} = \sum_{j=0}^{k-1} m_j p_j$$

$$s = \sqrt{\left(\sum_{j=0}^{k-1} (m_j - \bar{x})^2 p_j\right) + \frac{\delta^2}{12}} \quad \text{or} \quad s = \sqrt{\left(\sum_{j=0}^{k-1} m_j^2 p_j\right) - \bar{x}^2 + \frac{\delta^2}{12}}$$

• Some choose to ignore the $\delta^2/12$ term

Quantization Error

- Continuous-data <u>histogram</u> \bar{x} , s will differ slightly from sample \bar{x} , s
- Quantization error associated with binning of continuous data
- If difference is not slight, a, b, and k (or δ) should be adjusted
- Example 4.3.3: 1000-point buffon sample

Let
$$a = 0.0$$
, $b = 2.0$, and $k = 20$

	raw data	histogram	histogram with $\delta=0$
\bar{x}	1.135	1.134	1.134
S	0.424	0.426	0.425

Essentially no impact of $\delta^2/12$ term

Why would we ever bother calculating \bar{x} and s from a histogram when we have Welford's Equations for calculating both terms in an efficient and accurate manner?

Empirical Cumulative Distribution Functions

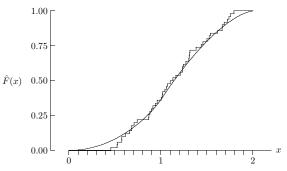
- Drawback of CDH: need to choose k
- \bullet Two different choices for k can give quite different histograms
- Estimated cumulative distribution function for random variable X:

$$\hat{F}(x) = \frac{\text{the number of } x_i \in \mathcal{S} \text{ for which } x_i \leq x}{n}$$

- Empirical cumulative distribution function: plot of $\hat{F}(x)$ versus x
- With an empirical CDF, no parameterization required
- However, must store all the data and then sort

Example 4.3.7: An Empirical CDF

• n = 50 observations of the needle from buffon



ullet Upward step of 1/50 for each of the values generated

CDH Versus Empirical CDF

Continuous Data Histogram:

- Superior for detecting shape of distribution
- Arbitrary parameter selection is not ideal

Empirical Cumulative Distribution Function:

- Nonparametric, therefore less prone to sampling variability
- Shape is less distinct than that of a CDH
- Requires storing and sorting entire data set
- Often used for statistical "goodness-of-fit" tests