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Recall that a discrete data histogram:
» is an approximation of the point mass function for the underlying
distribution
» the average and standard deviation (X, s) of a discrete data histogram
are the same as the average and standard deviation of the sample itself
— probably not the same as the underlying distribution (due to
sampling).



Section 4.3: Continuous-Data Histograms

o Consider a real-valued sample S = {x1,x2,...,%,}
@ Data values are generally distinct

@ Assume lower and upper bounds a, b
a<xi<b i=1,2,...,n
@ Defines interval of possible values for random variable X

X =la,b) ={x|a<x< b}
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@ Partition the interval X = [a, b) into k equal-width bins

k—1
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@ The bins are By =[a,a+9), Bi=[a+d,a+20) ...
@ Width of each binis 6 = (b—a)/k
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Continuous Data Histogram

(]

For each x € [a, b), there is a unique bin B} with x € B;

(]

Estimated density of random variable X is

A the number of x; € S for which x; € B;
Fi) = nd

Continuous-data histogram: a “bar” plot of IA‘(X) Versus x

(]

(]

Density: relative frequency normalized via division by ¢

f(x) is piecewise constant

(]
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Histogram Parameter Guidelines

(]

Choose a, b so that few, if any, data points are outliers

o If k is too large (0 is too small), histogram will be “noisy”

o If k is too small (¢ is too large), histogram will be too
“smooth”

@ Keep figure aesthetics in mind

(]

Typically |logy(n)| < k < |/n] with a bias toward

k= [(5/3)Vn]
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Example 4.3.2: Smooth, Noisy Histograms

@ k=10 (6§ =0.2) gives perhaps too smooth a histogram
@ k=140 (6 =0.05) gives too noisy a histogram
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@ Guidelines: 9 < k < 31 with bias toward
k= [(5/3)v/1000] = 16

@ Note no vertical lines to horizontal axis
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Relative Frequency

@ Define p; to be the relative frequency of points in bin B;
@ Define the bin midpoints

o1 .
mj:a—|—<1+§)6 J

mo my

T T T T T T
a

o Then p; = §f(m;)

@ Note that pg + p1 + -+ + px—1 = 1 and IA‘() has unit area
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Histogram Integrals

o Consider the two integrals

/a ’ xf(x) dx / ’ x?F(x) dx

@ Because f(-) is piecewise constant, integrals become
summations

b k—1
/ x?(x)dx == m;p;
a =0
b R k—1 (52
/ X*f(x)dx = - = mjgpj +E
a =0

@ Continuous-data histogram mean, standard deviation are
defined in terms of these integrals
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Histogram Mean and Standard Deviation

@ Continuous-data histogram mean and standard deviation:

X = /ab xF(x) dx s= \//ab(x — X)2F(x) dx

@ X and s can be evaluated exactly by summation

k—1 5 k—1 5
— . % . — 2 . %
5= (jzo(mj—x)ij> +E or s= <jzomj pj> _X2+E

@ Some choose to ignore the §2/12 term
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Quantization Error

@ Continuous-data histogram x, s will differ slightly

from sample x, s
@ Quantization error associated with binning of continuous data
o If difference is not slight, a, b, and k (or §) should be adjusted

o Example 4.3.3: 1000-point buffon sample
Let a=0.0, b=12.0, and k =20

raw data histogram histogram with § =0
X 1.135 1.134 1.134
s 0.424 0.426 0.425

Essentially no impact of §2/12 term
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Why would we ever bother calculating x and s from a histogram when we
have Welford’s Equations for calculating both terms in an efficient and
accurate manner?



Empirical Cumulative Distribution Functions

@ Drawback of CDH: need to choose k
@ Two different choices for k can give quite different histograms
@ Estimated cumulative distribution function for random

variable X:

A the number of x; € S for which x; < x
F(x) =

n

o Empirical cumulative distribution function: plot of F(x)
versus x

@ With an empirical CDF, no parameterization required

@ However, must store all the data and then sort
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Example 4.3.7: An Empirical CDF

@ n = 50 observations of the needle from buffon
1.00
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@ Upward step of 1/50 for each of the values generated
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CDH Versus Empirical CDF

Continuous Data Histogram:
@ Superior for detecting shape of distribution
@ Arbitrary parameter selection is not ideal
Empirical Cumulative Distribution Function:
@ Nonparametric, therefore less prone to sampling variability
@ Shape is less distinct than that of a CDH
@ Requires storing and sorting entire data set

@ Often used for statistical “goodness-of-fit” tests
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