
CSCI 423 Learning Group Assignment 11 Next Event Simulation

All students should read chapter 5 up to (but not including) §5.1.3, then §5.3–5.3.2 for this assignment as well as

future lectures.

This LGA is structured differently than others before it. The reading from the text describes the important steps

in creating a Next Event Simuation (Algorithm 5.1.2). This assignment asks you to apply these principles to two

systems we can now readily imagine: a single server queue (SSQ) with feedback and a (daily! simple inventory

system (SiS) with delivery delays).

Within your learning group, each student should pick a simulation and language from the following crossed sets:1

(SSQ,SiS)× (C++,Python,Java)

For this LGA, we aren’t so concerned about “double coverage” — go for breadth of coverage instead. For this

assignment one simulation per student is probably sufficient — there are a total of six choices, so even a group of

five can achieve wide coverage without duplicating efforts.

For any language, you will need to decide on what your event data type looks like. There are at least two data elements

it needs: one to hold the time the event should activate and another to identify the type of event it is (pseudo

code uses .at and .type for these values). Depending on the event type there may be extra data elements required as

well. For instance an OrderDelivery event in the SiS would need a NumberOfCars data element to represent how

many cars are being delivered. Here are lists of event types and the additional data elements I’ve used in writing this

assignment.

Simulation Event Type Extra Data Members

SSQ Job Arrival Service Time

SSQ Feedback Arrival Service Time

SSQ Job Completion (None)

SiS Demand (None)

SiS Inventory Review (None)

SiS Order Delivery Number of Cars

All of your implementations will use the same type of event list, a simple linked list (C++ std::list, Python list

aka ["a", "b", 1, "d"], Java: java.util.LinkedList). You can either:

i. insert events into the list wisely, keeping the list in activation time sorted order (O(n)),

ii. insert events naively and search the full list for the imminent event (O(n)),

iii. or insert events naively and use the linked list’s sort functionality before extracting the imminent next event

(probably O(n logn)).

Option (iii) is shown in the pseudo code for this assignment.

On the following two pages are pseudo code for SSQ and SiS systems implemented using next event simulation tech-

niques. The pseudo code is commented with respect to the steps in Algorithm 5.1.3. For simplicity, both systems will

use a termination time of τ = 1000 — not permiting new arrival events to be added after this simulation time.

Implement your simulations using your language’s built-in random number generator, you may need to implement

some of the variants we have seen so far such as Uni f orm(a,b), Exponential(µ), Geometric(p), and Equilikely(a,b).
The distributions for critical values in the simulations can be read from the pseudo code.

Be sure to print out (“report”) the values for your metrics tracked in the simulation. Even better: use your group’s

binner from lga-sim-correlations.pdf to show density histograms for these results.

Some notes about each pseudo code example follow on the next page, the pseudo code listings are on the last two

pages of this assignment write-up. I tend to write “mathy” pseudo code, and avoid = since it has different meanings

in code as opposed to math. In keeping with mathy notation, | · | (absolute value bars) is used for the size (number of

elements) in a container.2

1You may insert another language of your group’s choice, but there must be at least two group members for whom it is not a “new” language to

them, the majority of group members must agree to its use, and it must be a language suitable for course projects.
2At least I didn’t throw the proper “mathy” ¬ and ∧ operators at you as well.

https://cs.mcprogramming.com/static/sim/hr/0d9770e3a9a56522/lga-sim-correlations.pdf

CSCI 423 Learning Group Assignment 11 Next Event Simulation

Students aren’t required to follow the example logic verbatim. As long as you stick to the instructions on this first

page, and end up with a working, correct simulation, we’ll be good.

SSQ Notes

• The simulation state is maintained by a true queue data structure (for holding delayed jobs) and a flag variable

that tracks if the service component of the SSQ is currently processing a job.

• Any completed job has a 25% chance of feeding back into the SSQ, the time it takes to return is Exponential(1)
and its next service time is always one-half of its last service time.

• Notice that we don’t put 1000 job arrival events into the event list and then sort, we put only one (non feedback)

job into the event list at a time. When it arrives and is processed we determine the arrival time of the job

following it and schedule it with the event list.

• Like the pseudo code, your simulation should track and report a couple of simple SSQ metrics.

SiS Notes

• The S and s variables come from the textbook’s original SiS presentation S = 80, s = 20. Don’t confuse S = 80

with the script S in the text and lecture slides; the latter is a collection of variables called the system state.

• The simulation state is maintained by an inventory variable and an “on order but not delivered” variable.

• The timing of inventory reviews is not probabilistic, it happens every week and is hard-coded as 7 days.

• Notice that we don’t put 1000 demand arrival events into the event list and then sort, we put only one demand

into the event list at a time. When it arrives and is processed we determine the arrival time of the next customer

(demand) and schedule it with the event list.

• Like the pseudo code, your simulation should track and report a couple of simple SiS metrics.

Page 2

CSCI 423 Learning Group Assignment 11 Next Event Simulation

SSQ with feedback NES pseudo code

// INITIALIZE

eventList← empty List

t← 0 # simulation clock

τ← 1000 # no new events after τ

SSQ specific state

jobQueue← empty Queue

inService← False

for reporting

newJobCount← 0

jobsServiced← 0

kick things off with a job arrival at some time in the future

aka "priming the pump"

f irstArrival.at ← Exponential(2.0)
f irstArrival.type← ArrivalEvent

f irstArrival.service←Uni f orm(0,2)
eventList.insert(f irstArrival)
while(|eventList|> 0) do (

eventList.sort(by .at)
event← extract event from eventList with smallest .at time

t← event.at // PROCESS EVENT

if(event.type is ArrivalEvent or is FeedbackEvent) then (// PROCESS EVENT

if(event.type is ArrivalEvent) then (

increment newJobCount

schedule the next job arrival

nextArrival.at← t+Exponential(2.0)
if(nextArrival.at < τ) then (// SCHEDULE NEW EVENT

nextArrival.type← ArrivalEvent

nextArrival.service←Uni f orm(0,2)
eventList.insert(nextArrival)

)

)

place into job queue

jobQueue.enqueue(event)
) else if(event.type is JobCompleteEvent) then (// PROCESS EVENT

any job is a candidate for feedback with probability 0.25

if(Uni f orm(0,1)< 1
4

) then (// SCHEDULE NEW EVENT

f eedbackArrival.at← t +Exponential(1.0)
f eedbackArrival.type← FeedbackEvent

f eedbackArrival.service← event.service
2

eventList.insert(f eedbackArrival)
}

inService← False

)

if(not inService and | jobQueue|> 0) then (

event← jobQueue.dequeue()
event.at← t+ event.service // SCHEDULE NEW EVENT

event.type← JobCompleteEvent

eventList.insert(event)
inService← True

increment jobsServiced

)

)

// TERMINATE

report t, newJobCount, jobsServiced

Page 3

CSCI 423 Learning Group Assignment 11 Next Event Simulation

daily SiS with delivery delay NES pseudo code

// INITIALIZE

eventList← empty List

t← 0 # simulation clock

τ← 1000 # no new events after τ

SiS specific state

inventory← S

onOrder← 0

for reporting

backorderCount← 0 # number of cars purchased when inventory <= 0

orderCount← 0

schedule an inventory review at 7 days

f irstReview.at← 7

f irstReview.type← ReviewEvent

eventList.insert(f irstReview)
schedule a first demand arrival

f irstDemand.at← Exponential(2
3
)

f irstDemand.type← DemandEvent

eventList.insert(f irstDemand)
while(|eventList|> 0) do (

eventList.sort(by .at)
event← extract event from eventList with smallest .at time

t← event.at // PROCESS EVENT

if(event.type is ReviewEvent) then (// PROCESS EVENT

schedule the next review

nextReview.at← t+7

if(nextReview.at < τ) then (// SCHEDULE NEW EVENT

nextReview.type← ReviewEvent

eventList.insert(nextReview)
)

re order?

if(inventory+onOrder≤ s) then (

deliveryEvent.at← t +Exponential(7) // SCHEDULE NEW EVENT

deliveryEvent.type← DeliveryEvent

deliveryEvent.count← S− (inventory+onOrder)
increment onOrder by deliveryEvent.count

eventList.insert(deliveryEvent)
increment orderCount

)

) else if(event.type is DeliveryEvent) then (// PROCESS EVENT

decrement onOrder by event.count

increment inventory by event.count

) else if(event.type is DemendEvent) then (// PROCESS EVENT

schedule the next demand

nextDemand.at← t+Exponential(2
3
)

if(nextDemand.at < τ) then (// SCHEDULE NEW EVENT

nextDemand.type← DemandEvent

eventList.insert(nextDemand)
)

purchased← Geometric(3
4
)

if(purchased > 0) then (

if(inventory≥ purchased) then (

decrement inventory by purchased

) else (

if(inventory> 0) then (

decrement purchased by inventory

inventory← 0

)

decrement inventory by purchased

increment backorderCount by purchased

)

)

)

)

flow balanced inventory

if(inventory< S) then (

if(inventory< 0) increment backorderCount by |inventory|
increment orderCount

t← t+Exponential(7)
)

report t, orderCount, backorderCount // TERMINATE

Page 4

