CSCI423 Learning Group Assignment 11 Next Event Simulation

All students should read chapter 5 up to (but not including) §5.1.3, then §5.3-5.3.2 for this assignment as well as
future lectures.

This LGA is structured differently than others before it. The reading from the text describes the important steps
in creating a Next Event Simuation (Algorithm 5.1.2). This assignment asks you to apply these principles to two
systems we can now readily imagine: a single server queue (SSQ) with feedback and a (daily! simple inventory
system (SiS) with delivery delays).

Within your learning group, each student should pick a simulation and language from the following crossed sets:!

(SSQ, SiS) x (C++,Python, Java)

For this LGA, we aren’t so concerned about “double coverage” — go for breadth of coverage instead. For this
assignment one simulation per student is probably sufficient — there are a total of six choices, so even a group of
five can achieve wide coverage without duplicating efforts.

For any language, you will need to decide on what your event data type looks like. There are at least two data elements
it needs: one to hold the time the event should activate and another to identify the type of event it is (pseudo
code uses .at and .type for these values). Depending on the event type there may be extra data elements required as
well. For instance an OrderDelivery event in the SiS would need a NumberOfCars data element to represent how
many cars are being delivered. Here are lists of event types and the additional data elements I’ve used in writing this
assignment.

| Simulation | Event Type | Extra Data Members |

SSQ Job Arrival Service Time
SSQ | Feedback Arrival | Service Time
SSQ | Job Completion | (None)

SiS Demand (None)
SiS | Inventory Review | (None)
SiS Order Delivery | Number of Cars

All of your implementations will use the same type of event list, a simple linked list (C++ std::1ist, Python list
aka ["a", "b", 1, "d"],Java: java.util.LinkedList). You can either:

i. insert events into the list wisely, keeping the list in activation time sorted order (O(n)),
ii. insert events naively and search the full list for the imminent event (O(n)),

iii. or insert events naively and use the linked list’s sort functionality before extracting the imminent next event
(probably O(nlogn)).

Option (iii) is shown in the pseudo code for this assignment.

On the following two pages are pseudo code for SSQ and SiS systems implemented using next event simulation tech-
niques. The pseudo code is commented with respect to the steps in Algorithm 5.1.3. For simplicity, both systems will
use a termination time of T = 1000 — not permiting new arrival events to be added after this simulation time.

Implement your simulations using your language’s built-in random number generator, you may need to implement
some of the variants we have seen so far such as Uniform(a,b), Exponential(u), Geometric(p), and Equilikely(a,b).
The distributions for critical values in the simulations can be read from the pseudo code.

Be sure to print out (“report”) the values for your metrics tracked in the simulation. Even better: use your group’s
binner from lga-sim-correlations.pdf to show density histograms for these results.

Some notes about each pseudo code example follow on the next page, the pseudo code listings are on the last two
pages of this assignment write-up. I tend to write “mathy” pseudo code, and avoid = since it has different meanings
in code as opposed to math. In keeping with mathy notation, |- | (absolute value bars) is used for the size (number of
elements) in a container.?

'You may insert another language of your group’s choice, but there must be at least two group members for whom it is not a “new” language to
them, the majority of group members must agree to its use, and it must be a language suitable for course projects.
2 At least I didn’t throw the proper “mathy” — and A operators at you as well.

https://cs.mcprogramming.com/static/sim/hr/0d9770e3a9a56522/lga-sim-correlations.pdf

CSCI423 Learning Group Assignment 11 Next Event Simulation

Students aren’t required to follow the example logic verbatim. As long as you stick to the instructions on this first
page, and end up with a working, correct simulation, we’ll be good.

SSQ Notes

* The simulation state is maintained by a true queue data structure (for holding delayed jobs) and a flag variable
that tracks if the service component of the SSQ is currently processing a job.

* Any completed job has a 25% chance of feeding back into the SSQ, the time it takes to return is Exponential(1)
and its next service time is always one-half of its last service time.

* Notice that we don’t put 1000 job arrival events into the event list and then sort, we put only one (non feedback)
job into the event list at a time. When it arrives and is processed we determine the arrival time of the job
following it and schedule it with the event list.

¢ Like the pseudo code, your simulation should track and report a couple of simple SSQ metrics.

SiS Notes

e The S and s variables come from the textbook’s original SiS presentation S = 80, s = 20. Don’t confuse S = 80
with the script § in the text and lecture slides; the latter is a collection of variables called the system state.

» The simulation state is maintained by an inventory variable and an “on order but not delivered” variable.
» The timing of inventory reviews is not probabilistic, it happens every week and is hard-coded as 7 days.

* Notice that we don’t put 1000 demand arrival events into the event list and then sort, we put only one demand
into the event list at a time. When it arrives and is processed we determine the arrival time of the next customer
(demand) and schedule it with the event list.

* Like the pseudo code, your simulation should track and report a couple of simple SiS metrics.

Page 2

CSCI423 Learning Group Assignment 11 Next Event Simulation

SSQ with feedback NES pseudo code
// INITIALIZE
eventList < empty List
t+<0 # simulation clock
T < 1000 # no new events after 7T
SSQ specific state
JjobQueue < empty Queue
inService <~ False
for reporting
newJobCount < 0
jobsServiced + 0
kick things off with a job arrival at some time in the future
aka "priming the pump"
firstArrival.at < Exponential(2.0)
firstArrival .type < ArrivalEvent
firstArrival.service <— Uniform(0,2)
eventList.insert (firstArrival)
while (|eventList) >0) do (
eventList.sort(by .at)
event <— extract event from eventList with smallest .at time
t < event.at // PROCESS EVENT
if (event.type is ArrivalEvent or is FeedbackEvent) then (// PROCESS EVENT
if (event.type is ArrivalEvent) then (
increment newJobCount
schedule the next job arrival
nextArrival.at < t + Exponential (2.0)
if (nextArrival.at <t) then (// SCHEDULE NEW EVENT
nextArrival.type <— ArrivalEvent
nextArrival .service < Uniform(0,2)
eventList.insert (nextArrival)

)
place into job queue
JjobQueue.enqueue(event)

) else if (event.type is JobCompleteEvent) then (// PROCESS EVENT
any Jjob is a candidate for feedback with probability 0.25
if(Uniform(0,1)<}¢) then (// SCHEDULE NEW EVENT

feedbackArrival.at < t + Exponential(1.0)

feedbackArrival type < FeedbackEvent

feedbackArrival service < &eniservice
eventList.insert(feedbackArrival)

}

inService < False

if (not inService and |jobQueue|>0) then (
event < jobQueue.dequeue()
event.at <t + event .service // SCHEDULE NEW EVENT
event.type <~ JobCompleteEvent
eventList .insert (event)
inService <~ True
increment jobsServiced

)

// TERMINATE
report t, newJobCount, jobsServiced

Page 3

CSCI423 Learning Group Assignment 11

daily SiS with delivery delay NES pseudo code
// INITIALIZE
eventList <~ empty List
t<+0 # simulation clock
T < 1000 # no new events after 7T
SiS specific state
inventory < S
onOrder < 0
for reporting
backorderCount < 0 # number of cars purchased when inventory <= 0
orderCount < 0
schedule an inventory review at 7 days
firstReview.at <7
firstReview.type <~ ReviewEvent
eventList.insert (firstReview)
schedule a first demand arrival
firstDemand.at < Exponential (%)
firstDemand.type < DemandEvent
eventList.insert (firstDemand)
while (|eventList) >0) do (
eventList.sort(by .at)
event < extract event from eventList with smallest .at time
t + event.at // PROCESS EVENT
if (event.type is ReviewEvent) then (// PROCESS EVENT
schedule the next review
nextReview.at <t +7
if (nextReview.at <t) then (// SCHEDULE NEW EVENT
nextReview.type <— ReviewEvent
eventList.insert(nextReview)
)
re order?
if (inventory+onOrder<s) then (
deliveryEvent.at <t + Exponential(7) // SCHEDULE NEW EVENT
deliveryEvent.type <~ DeliveryEvent
deliveryEvent.count <— S — (inventory + onOrder)
increment onOrder by deliveryEvent.count
eventList.insert(deliveryEvent)
increment orderCount
)
) else if(event.type is DeliveryEvent) then (// PROCESS EVENT
decrement onOrder by event.count
increment inventory by event.count
) else if(event.type is DemendEvent) then (// PROCESS EVENT
schedule the next demand
nextDemand.at < t + Exponential %)
if (nextDemand.at < 7T) then>(// SCHEDULE NEW EVENT
nextDemand.type <~ DemandEvent
eventList .insert(nextDemand)
)
purchased < Geometric(3)
if (purchased >0) then (
if (inventory > purchased) then (
decrement inventory by purchased
) else (
if (inventory >0) then (
decrement purchased by inventory
inventory < 0
)
decrement inventory by purchased
increment backorderCount by purchased

)

flow balanced inventory

if (inventory<S) then (
if (inventory< (0) increment backorderCount by |inventory|
increment orderCount
t <t + Exponential(7)

)

report t, orderCount, backorderCount // TERMINATE

Page 4

Next Event Simulation

