October 9, 2025

Conceptual Model

We have an arbitrarily large urn of marbles labeled with distinct values in [0, N-1] (only 1 marble with each number). We would like to estimate the value of N (and not by inspecting every single marble).

Specification Model We can estimate N by drawing z marbles (x_i s, **with replacement**) and calculating their average value \bar{x} . We expect this to be near the true average, μ , which can be written using Gauss' Law

$$\bar{x} = \frac{1}{z} \sum_{i=1}^{z} x_i \approx \mu = \frac{1}{N} \sum_{i=0}^{N-1} i = \frac{1}{N} \left(\frac{(N-1)(N)}{2} \right) = \frac{N-1}{2} \rightarrow N \approx 1 + \frac{2}{z} \sum_{i=1}^{z} x_i$$

We are **given** N, we will simulate the above sample and averaging procedure arriving at a **simulated estimate** for N — if our simulation can be validated, we can use this approach in the real world!

Conceptual Model

We have an arbitrarily large urn of marbles labeled with distinct values in [0, N-1] (only 1 marble with each number). We would like to estimate the value of N (and not by inspecting every single marble).

Specification Model We can estimate N by drawing z marbles (x_i s, with replacement) and calculating their average value \bar{x} . We expect this to be near the true average, μ , which can be written using Gauss' Law

$$\bar{x} = \frac{1}{z} \sum_{i=1}^{z} x_i \approx \mu = \frac{1}{N} \sum_{i=0}^{N-1} i = \frac{1}{N} \left(\frac{(N-1)(N)}{2} \right) = \frac{N-1}{2} \rightarrow N \approx 1 + \frac{2}{z} \sum_{i=1}^{z} x_i$$

We are **given** N, we will simulate the above sample and averaging procedure arriving at a **simulated estimate** for N — if our simulation can be validated, we can use this approach in the real world!

2 minutes — Your language library doesn't have a Random() providing $u \in (0,1)$, instead it has RandomInteger() with with range $[0, RAND_MAX]$.

How would your group design a computational model?

Computational Model

Program simple-monte-carlo.c takes as input N and calculates the averages from small samplings $(z = \lfloor 0.15N \rfloor, \{x_i\}_{i=1}^z)$ of integral values on [0, N-1].

We use a pRNG library with a RandomInteger() function that returns values within $[0, RAND_MAX]$, RAND $_MAX > N$.

We simulate the drawing and replacement of a labeled marble x_i with $x_i \leftarrow \texttt{RandomInteger}() \mod \mathbb{N}$

We calculate the average of each k sample and track how many $\bar{x}_k < \mu$, and how many $\bar{x}_k \ge \mu$ in a counts [2] array.

"... view the source, Luke!"

Verification

For verification, we'll simply observe if many \bar{x}_k s fall symmetrically about the known, true μ .

Verification

For verification, we'll simply observe if many \bar{x}_k s fall symmetrically about the known, true μ .

Demonstrate...

```
# n not a variable, it's a command; N=10000, implicit sample size z=0.15N, SEED?
$ ./simple-monte-carlo n 10000 SEED
```

Verification

For verification, we'll simply observe if many \bar{x}_k s fall symmetrically about the known, true μ .

Demonstrate...

```
\# n not a variable, it's a command; N=10000, implicit sample size z=0.15N, SEED? 
$ ./simple-monte-carlo n 10000 SEED
```

Adding a fourth command line parameter allows many "samples" to be drawn, each with their own \bar{x}_k estimate of μ . In simulation speak, we call these *replications* (n). In this case intermediate console reports show:

- \triangleright a particular kth experiment's results,
- the total number of sample \bar{x}_k s that have been to the left and right of μ

```
# N=10000, SEED?, replications=100
$ ./simple-monte-carlo n 10000 SEED 100
```

If we collect many samples (k = 1, ..., B) for a single experiment, each with an \bar{x}_k , how do we expect this set of $\{\bar{x}_1, \bar{x}_2, ..., \bar{x}_k, ..., \bar{x}_B\}$ to be distributed around the true μ ?

drumroll please

Oops

Clearly

 $\label{eq:reconstruction} {\tt RandomInteger()} \ \ mod \ {\tt N} \\ doesn't \ perform \ quite \ as \ advertised \ for \ some \ {\tt Ns}.$

Why? We'll answer this later in lecture, first math (yay!)

equilikely-monte-carlo n 1717600 SEED 1000

The author says to select random array elements with a [Equilikely (0, n-1)]...

This sounds a lot like drawing [0, N-1] labeled marbles out of an urn...

Could it be that Equilikely(a,b) fixes our simple-monte-carlo problems? **Demonstration...**

equilikely-monte-carlo n 1717600 SEED 1000

The author says to select random array elements with a [Equilikely(0, n-1)] ...

This sounds a lot like drawing [0, N-1] labeled marbles out of an urn...

Could it be that Equilikely(a,b) fixes our simple-monte-carlo problems? **Demonstration**...

But ./equilikely-monte-carlo working doesn't explain why $x_i \leftarrow \texttt{RandomInteger()} \mod \mathbb{N}$ was wrong!

Range of RandomInteger() Partitioned into N Sized Chunks

Data Histogram of RandomInteger() mod N

The red residual of the RandomInteger() range contributes disproportionally to the smaller values of the

RandomInteger() mod N

histogram.

Depending on RAND_MAX and N, and the use case of results, this *might* be negligible.

If it is not, drastically wrong results can occur.

RAND_MAX, the largest value returned by RandomInteger() (not always ρ), is largely independent of the underlying pRNG. It is tied to the machine+software architecture!

So choosing a "better" pRNG doesn't make this technique OK!

Equilikely(a,b): A Solution to RandomInteger () mod N...

Is there a **safe range** to use the simple

RandomInteger() $\mod N$

technique for random integral values?

Who cares! — just use the correct algorithm (Equilibely (a, b))

- 1. Independent of the pRNG used, its period (ρ) , and the architecture (int size)
- 2. Independent of N
- 3. You still have to generate one random number (no savings there)
- 4. Proper Random () functions return $u \in (0,1)$ already, not integers
- 5. "Technically correct" is the best kind of correct:)

Why care? — Consider the canonical **Fisher-Yates** shuffling algorithm, web examples for which almost always use the RandomInteger() mod N technique for choosing the next array element. While this technique may be sufficient for small array sizes, this demonstration suggests **it does not scale** to large arrays. "Big Data" anyone?