CSCI423 Learning Group Assignment 17 CRV Applications

All students should read §7.5-7.6.1 in preparation for the next assignment and the next lecture.

The following numbered questions should be split across your group and the solutions discussed during the next
lecture period. Students should review the learning goals for the day, determine which are applicable to their questions
and provide answers or commentary to their group members. When using the Internet to formulate answers (some
questions may require this), keep track of where you find your information on the web. You may be asked for, and are
expected to have (in Email-able form), URLs supporting your investigations.

1. Question 7.1.9 (§7.1.3); also calculate the algebraic variate F! (u).

BEWARE: the following is a big question, no group should expect anyone to do more than this question 2 for the
assignment. If you’re in a big group, consider two people pair-programming this solution — or using some sort of
code collaboration effort. You’ll see evidence that the solution is correct, so “double coverage” isn’t required.

Arbitrary Piecewise Function
2. Consider a data file such as piecewise-function.dat

(plotted at the right) that represents a piecewise linear
function defined by k points in the first two quadrants of 81 i
the xy-cartesian plane: 6

k 4 N

{Giyi)tic, k22, xi<xip1, yi>=0 (1)
2L J

As you can probably surmise by inspection: the data is
simply one point per line, the points being line-by-line 0
sequential in the file, with & lines in the file. _‘ 4 _‘2 0 é “1 (‘) é

Write code that performs the following steps:

(a) Reads points (x;,y;) from a disk file (assume the function has a finite domain of course, it’s a finite disk file),
and normalizes the area under the piecewise curve to 1 by scaling the y; appropriately. (You have created
a piecewise continuous probability distribution f(x) with this step).

(b) After normalizing, calculate the CDF values F (x;) for the k x; (F(x1) = 0). Notice two things:
i These are cumulative areas, so the F(x2) < F(x3) < F(x4).
ii Most of the areas under line segments are triangles, some are trapezoids.
Store these per-segment CDF values in a data structure so that the (i, F (x;)) pairs can be easily searched.
(c) Now, for segments 2, ...k, calculate the per segment quadratic coefficients A;, B;,C; that represent the seg-
ment’s F;(x). For clarity, we use a script F; for the quadratic equation (integral of f;(x)) associated with
segment 7, this isn’t the CDF for segment i per se:

F(x;)=0 F(x) =F(xi—1)+ %i(x) x€ (xi_1,xi])

See the plots on the following page for a visualization of what you’re doing and F (x); vs F;.

This is a long LGA problem, so you’re saved the pencil work:

m; m;
Fi(x) = —21 K+ (yio1 —mixi 1) x+ (—zlx,'Zq —)’iflxifl)
~————
2 b R .

Aj Gi

https://cs.mcprogramming.com/djsim/dlg/schedule#today
https://cs.mcprogramming.com/static/sim/hr/a90eaa2997b14742/piecewise-function.dat
./piecewise-function_latex.eps

CSCI423 Learning Group Assignment 17 CRV Applications

where m; is the slope of the line segment from (x;_1,y;—1) to (x;,y;). Store A;, B;, and C; so they can be easily
retrieved for each segment i. Notice from (1), that you may assume no two points in the piecewise function
have the same x values, so there are no “divide by zero” concerns for m;.

Piecewise CDF F(x) and Discrete Per-Segment F (x;) Per-Segment Quadratic Curves and Discrete f(x;)
\ 1 \ \ \
1L Discrete F(x;)) ——— i Discrete f(x;)) ——
Piecewise F(x) Fi(x)
0.8 + B
0.8 4
0.6 - 1 0.6 - 1
= =
= 04 B = 0.4 L i
0.2 4
0.2 + B
0
I I I I I I 0L / I I I
—4 -2 0 2 4 6 8 —4 -2 0 2 4 6 8
x x

(d) Finally, implement a variate algorithm (F~!(u)) that produces points from the distribution created in part a;
the algorithm will be syncronized and have monotonicity (see the reading in chapter 6). The specific steps
to take for each u <— Random() are:

i. Find the left-most segment i with F (x;) > u, which is the definition of F*(u) for discrete distributions.

ii. Decrease u so that it is less than F;(x;):
W =u—F(xi_1)

Geometrically, the value of ' is now between 0 and the area of segment i.
iii. Solve
_ —b=* Vb* —4ac
N 2a
which I hope you all remember as the quadratic equation. Recall this solves for the y = 0 root of the
equation, so ¢ = C; — u'. Of course, you have two candidates for x due to the &, but one of them is
gauranteed to fall within [x;_1,x;].

W' = Fi(x) =A;x* + Bix+C; using x

Your program should have the following command line interface:
$./piecewisevariate points.dat seed N
Where the application produces N points using seed for the Random() draws of F~!(u) in part d.

Hint: An ideal implementation of F~! (1) would use binary search to find the piecewise linear segment of in-
terest. You might even be able to use the binary search logic from your group’s lga-discrete-random-variates.pdf
solution. (Yes! You are actually calculating a discrete random variable’s CDF in part b!)

Page 2

./piecewise-cdf_latex.eps
./piecewise-segcdf_latex.eps
https://cs.mcprogramming.com/static/sim/hr/6dc62508a6b3f4e4/lga-discrete-random-variates.pdf

CSCI423 Learning Group Assignment 17 CRV Applications

Piecewise Function and Variate Histogram (N=10000)

(e) Demonstrate with a histogram or empirical CDF that

your code works as expected for the provided data file. i
Something like this would be convincing evidence: 021
0I5

This graph shows the underlying distribution as a light = ;|

grey line, beware that this is the normalized distribution
. . . 0.05 |

from part a, not the original function! (I don’t think you fr

need to show this, by the way, I just don’t want you thrown ‘ ‘ ‘ ‘

off by the discrepency.) -2 0 2 4 6 8

3. Consider the flawed non-stationary interarrival rate algorithm presented in the text (§7.5.1) and considered briefly
in lecture (show_non-stationary-arrivals.pdf):

1
ai+1 < a; + Exponential (m> 2)

and the thinning algorithm which is a correct, accept-reject technique for generating non-stationary arrival
times. This question will have you compare the distribution of arrival times between the two techniques.

For each of the following arrival rate functions
A. AL =31+ %
B. Ac=cos (&) +1

c oo fx=1=1{]10<5 then 1+3
"W T ifx=1—4]10>5 then 333

As generates a sawtooth pattern 10 time units wide with a height ranging from 1 to %

Use the following algorithm to generate N arrivals within a (mock) simulation time of T = 87:

while(N>0) do (Since we need to analyze all the arrival times en masse, it
a0 is OK to store them in a list or set data structure.
while(N>0) do The NextArrival function should implement either the
a = NextArrival(a,\(1)) flawed next-arrival equation (2) (which would need to
if(a>1t) break know A(a) or the function definition of A(¢)) or the
store a as an arrival time thinning algorithm (which would also need to know
decrement N Amax). How you implement this in your preferred
) language is up to you — the nugget of pseudo code is just
) a guide.

Once you have everything coded up satisfactorily, do the following for each arrival rate function Ar (1), Ac(1),

As(1):

(a) First, generate two or three sets of flawed arrival data using different seeds, plot them together so you get a
feel for how results vary due to simple randomness. (see the note on the next page for a hint on how to do
this easily).

(b) Then generate a set of good arrival data using the thinning algorithm and compare them to the flawed results.

(c) How are the flawed arrival times different than the correct non-stationary arrival times? Are there character-
istics or features of the A(¢) functions that seem to exacerbate the differences? Summarize your results and

Page 3

./piecewise-histo_latex.eps
https://cs.mcprogramming.com/static/sim/hr/76d76ebb6cd4c3f7/show_non-stationary-arrivals.pdf

CSCI423 Learning Group Assignment 17 CRV Applications

provide plots supporting your conclusions. Be sure to always use the same N when comparing the arrival
times generated by the two techniques. You are welcome to investigate other A(r) functions as well :)

60mparing arrival times hint: There are two graphical ways to compare the arrival times generated by thea
two methods. The first is to look at the cumulative arrival function, which is similar to an emperical CDF —
an example is in the show_non-stationary-arrivals.pdf lecture slides. But the cumulative function does
not really give you a feel for how the arrivals differ.
An easy solution is to present histogram like plots for the various sets of arrival times; ideally plotted against
each other on the same axes.

1. First decide on the number of bins k. The same k guidelines for density histograms work well here

(show-histograms-cedf.pdf).

llog,n| <k < [v/n| with a bias towards k = {g %J

2. Calculate the bin width d = %, in this case 9 is an interval of time.
3. Count all the arrivals that occur within each bin and divide by n, the number of simulations you chose to
run per A, (¢). This is the average number of arrivals in the particular bin i, call it o;.
4. Lastly, divide all the o;s by &: %. This is the number of arrivals per time interval, in other words the arrival
rate; the same as A.(¢). So the contour of this plot should match A. (7).
Hint: If you already have a script or procedure for calculating your preferred k for the density histograms we
Qrefer in this course. Then the above steps amount to multiply the “density height” by % j

OIf you really want them to match you can pursue this in your leisure time.

Page 4

https://cs.mcprogramming.com/static/sim/hr/76d76ebb6cd4c3f7/show_non-stationary-arrivals.pdf
https://cs.mcprogramming.com/static/sim/hr/f504d833d873d05d/show-histograms-cedf.pdf

