
A General Acceptance-Rejection Technique for

Probability Distributions

i. A general purpose variate construction technique (von Neumann, 1951) when f (x) is known

but other variate generation techniques (construction, inversion of F(x), approximation by

H(x), and numerical solutions to u = F(x)) fail outright, are difficult, or computationally

prohibitive.

ii. This technique provides a reasonably efficient random variate for the Gamma(a,1)
distribution, from which variates for Erlang(n,b) and Chisquare(n) can be derived which are

not O(n).

A General Acceptance-Rejection Technique for

Probability Distributions

CASE STUDY: A recent paper presented research

which required the use of reservoir sampling of

HUGE data collections. As j becomes large, many,

many “pulls” are required from the pRNG to service

the Bernoulli(n/(j+1)) test.

This was inefficient for pRNGs “big enough” to

support their study sampling requirements,1 so they

used this technique to generate samples from a

Geometric(p) like2 distribution. . . Instead of

10,000 pRNG calls to find the next population

element to keep, they made only 8–10.

S ← first n elements of P

j← n

while(elements exist in P) do

e← next element from P

if(Bernoulli
(

n
j+1

)
is True) then (

i← Equilikely(0,n−1)
S [i]← e

)

increment j

)

1We’ll talk about this and other pRNG details in lecture shortly. . .
2Recall Geometric(p) is the number of failures before the first success of Bernoulli(p) trials.

In reservoir sampling p changes with every Bernoulli trial, so the distribution is not as straight forward as Geometric.

General Acceptance-Rejection Theorem — Implementation

p

X

f (x)
g(x)

c·g(x)

General Acceptance-Rejection Parameter Geometry
Given G−1(u) the IDF for g(x),
f (x), and c > 0 such that

f (x)≤ c ·g(x) over X :

repeat (

u← Random()

x← G−1(u)
v← Random()

) until (c ·g(x) · v≤ f (x))

x is a sample from X

proportionally drawn with f (x)

General Acceptance-Rejection Theorem — Summary

◮ An accept-reject algorithm for arbitrary

probability distributions with ellusive or

inefficient F−1(x) implementations.

◮ Requires (at least) two Random() calls and

a G−1(u) evaluation per iteration

Given G−1(u) the IDF for g(x),
f (x), and c > 0 such that

f (x)≤ c ·g(x) over X :

repeat (

u← Random()

x← G−1(u)
v← Random()

) until (c ·g(x) · v≤ f (x))

x is a sample from X

proportionally drawn with f (x)

General Acceptance-Rejection Theorem — Summary

◮ An accept-reject algorithm for arbitrary

probability distributions with ellusive or

inefficient F−1(x) implementations.

◮ Requires (at least) two Random() calls and

a G−1(u) evaluation per iteration

◮ What do we look for in a g(x) and G−1?

Why not simply use

c ·g(x) = max
X

f (x)

in which case g(x) is the uniform

distribution over X .

Given G−1(u) the IDF for g(x),
f (x), and c > 0 such that

f (x)≤ c ·g(x) over X :

repeat (

u← Random()

x← G−1(u)
v← Random()

) until (c ·g(x) · v≤ f (x))

x is a sample from X

proportionally drawn with f (x)

General Acceptance-Rejection Theorem — Summary

◮ An accept-reject algorithm for arbitrary

probability distributions with ellusive or

inefficient F−1(x) implementations.

◮ Requires (at least) two Random() calls and

a G−1(u) evaluation per iteration

◮ What do we look for in a g(x) and G−1?

Why not simply use

c ·g(x) = max
X

f (x)

in which case g(x) is the uniform

distribution over X .

Given G−1(u) the IDF for g(x),
f (x), and c > 0 such that

f (x)≤ c ·g(x) over X :

repeat (

u← Random()

x← G−1(u)
v← Random()

) until (c ·g(x) · v≤ f (x))

x is a sample from X

proportionally drawn with f (x)

First, and importantly, if f (x) has an infinite tail, g(x) = 0 over X and we can’t possibly find a

satisfying c > 0.

General Acceptance-Rejection Theorem — Summary

◮ An accept-reject algorithm for arbitrary

probability distributions with ellusive or

inefficient F−1(x) implementations.

◮ Requires (at least) two Random() calls and

a G−1(u) evaluation per iteration

◮ What do we look for in a g(x) and G−1?

Why not simply use

c ·g(x) = max
X

f (x)

in which case g(x) is the uniform

distribution over X .

Given G−1(u) the IDF for g(x),
f (x), and c > 0 such that

f (x)≤ c ·g(x) over X :

repeat (

u← Random()

x← G−1(u)
v← Random()

) until (c ·g(x) · v≤ f (x))

x is a sample from X

proportionally drawn with f (x)

More pragmatically, we want c to be as small as possible, in other words we want g(x) to closely

match f (x) — since larger cs means more reject loops through the failed predicate

c ·g(x) · v ≤ f (x)⇒ v≤ f (x)

c ·g(x)

