A General Acceptance-Rejection Technique for Probability Distributions

- i. A general purpose variate construction technique (von Neumann, 1951) when f(x) is known but other **variate generation techniques** (construction, inversion of F(x), approximation by H(x), and numerical solutions to u = F(x)) fail outright, are difficult, or computationally prohibitive.
- ii. This technique provides a reasonably efficient random variate for the Gamma(a, 1) distribution, from which variates for Erlang(n, b) and Chisquare(n) can be derived which **are not** O(n).

A General Acceptance-Rejection Technique for Probability Distributions

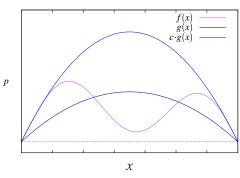
CASE STUDY: A recent paper presented research which required the use of **reservoir sampling** of HUGE data collections. As j becomes large, many, many "pulls" are required from the pRNG to service the Bernoulli(n/(j+1)) test.

This was inefficient for pRNGs "big enough" to support their study sampling requirements, 1 so they used this technique to generate samples from a Geometric(p) like 2 distribution... Instead of 10,000 pRNG calls to find the next population element to keep, they made only 8-10.

```
\begin{split} \mathcal{S} &\leftarrow \text{ first } n \text{ elements of } \mathcal{P} \\ j &\leftarrow n \\ \mathbf{while} (\text{ elements exist in } \mathcal{P} \text{ ) do} \\ e &\leftarrow \text{ next element from } \mathcal{P} \\ &\quad \mathbf{if} (\text{ } \textit{Bernoulli} \left( \frac{n}{j+1} \right) \text{ is True } \text{ ) } \mathbf{then } \text{ (} \\ i &\leftarrow \textit{Equilikely} (0, n-1) \\ &\quad \mathcal{S}[i] \leftarrow e \\ \text{ )} \\ &\quad \text{increment } j \\ \end{split}
```

General Acceptance-Rejection Theorem — Implementation

General Acceptance-Rejection Parameter Geometry



```
Given G^{-1}(u) the IDF for g(x),
f(x), and c>0 such that
f(x) < c \cdot g(x) over X:
repeat (
     u \leftarrow Random()
     x \leftarrow G^{-1}(u)
     v \leftarrow Random()
) until ( c \cdot g(x) \cdot v < f(x) )
x is a sample from X
   proportionally drawn with f(x)
```

- An accept-reject algorithm for arbitrary probability distributions with ellusive or inefficient $F^{-1}(x)$ implementations.
- ► Requires (at least) two Random() calls and a $G^{-1}(u)$ evaluation per iteration

```
Given G^{-1}(u) the IDF for g(x),
f(x), and c > 0 such that
f(x) < c \cdot g(x) over X:
repeat
     u \leftarrow Random()
     x \leftarrow G^{-1}(u)
     v \leftarrow Random()
) until ( c \cdot g(x) \cdot v < f(x) )
x is a sample from X
  proportionally drawn with f(x)
```

- An accept-reject algorithm for arbitrary probability distributions with ellusive or inefficient $F^{-1}(x)$ implementations.
- ▶ Requires (at least) two Random() calls and a $G^{-1}(u)$ evaluation per iteration
- ► What do we look for in a g(x) and G^{-1} ? Why not simply use

$$c \cdot g(x) = \max_{\mathcal{X}} f(x)$$

in which case g(x) is the uniform distribution over X.

```
Given G^{-1}(u) the IDF for g(x),
f(x), and c > 0 such that
f(x) < c \cdot g(x) over X:
repeat
     u \leftarrow Random()
     x \leftarrow G^{-1}(u)
     v \leftarrow Random()
) until ( c \cdot g(x) \cdot v < f(x) )
x is a sample from X
   proportionally drawn with f(x)
```

- An accept-reject algorithm for arbitrary probability distributions with ellusive or inefficient $F^{-1}(x)$ implementations.
- ► Requires (at least) two Random() calls and a $G^{-1}(u)$ evaluation per iteration
- ► What do we look for in a g(x) and G^{-1} ? Why not simply use

$$c \cdot g(x) = \max_{\mathcal{X}} f(x)$$

in which case g(x) is the uniform distribution over X.

```
Given G^{-1}(u) the IDF for g(x),
f(x), and c > 0 such that
f(x) < c \cdot g(x) over X:
repeat (
     u \leftarrow Random()
     x \leftarrow G^{-1}(u)
     v \leftarrow Random()
) until ( c \cdot g(x) \cdot v \le f(x) )
x is a sample from X
   proportionally drawn with f(x)
```

First, and importantly, if f(x) has an infinite tail, g(x) = 0 over X and we can't possibly find a satisfying c > 0.

- An accept-reject algorithm for arbitrary probability distributions with ellusive or inefficient $F^{-1}(x)$ implementations.
- ▶ Requires (at least) two Random() calls and a $G^{-1}(u)$ evaluation per iteration
- ► What do we look for in a g(x) and G^{-1} ? Why not simply use

$$c \cdot g(x) = \max_{\mathcal{X}} f(x)$$

in which case g(x) is the uniform distribution over X.

```
Given G^{-1}(u) the IDF for g(x),
f(x), and c > 0 such that
f(x) < c \cdot g(x) over X:
repeat
     u \leftarrow Random()
     x \leftarrow G^{-1}(u)
     v \leftarrow Random()
) until ( c \cdot g(x) \cdot v < f(x) )
x is a sample from X
   proportionally drawn with f(x)
```

More pragmatically, we want c to be as small as possible, in other words we want g(x) to closely match f(x) — since larger cs means more reject loops through the failed predicate

$$c \cdot g(x) \cdot v \le f(x) \Rightarrow v \le \frac{f(x)}{c \cdot g(x)}$$