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A General Acceptance-Rejection Technique for
Probability Distributions

A general purpose variate construction technique (von Neumann, 1951) when f(x) is known
but other variate generation techniques (construction, inversion of F(x), approximation by
H (x), and numerical solutions to u = F(x)) fail outright, are difficult, or computationally
prohibitive.

This technique provides a reasonably efficient random variate for the Gamma(a, 1)
distribution, from which variates for Erlang(n,b) and Chisquare(n) can be derived which are
not O(n).



A General Acceptance-Rejection Technique for
Probability Distributions

CASE STUDY: A recent paper presented research
which required the use of reservoir sampling of
HUGE data collections. As j becomes large, many,
many “pulls” are required from the pRNG to service
the Bernoulli(n/(j+ 1)) test.

S+ first n elements of P

jén

while( elements exist in P ) do
e+ next element from P

if( Bernoulli(i) is True ) then (

This was inefficient for pPRNGs “big enough” to i « Equilike lyj(zr)jn 1)
support their study sampling requirements,' so they Sl e

used this technique to generate samples from a )

Geometric(p) like? distribution. .. Instead of increment j

10,000 pRNG calls to find the next population )
element to keep, they made only 8-10.

'We'll talk about this and other PRNG details in lecture shortly. ..
2Recall Geometric(p) is the number of failures before the first success of Bernoulli(p) trials.
In reservoir sampling p changes with every Bernoulli trial, so the distribution is not as straight forward as Geometric.



General Acceptance-Rejection Theorem — Implementation

Given G '(u) the IDF for g(x),
f(x), and ¢>0 such that

General Acceptance-Rejection Parameter Geometry

{;g; fx)<c-g(x) over X:
c-g(x)
repeat (
u < Random()
x4 G (u)

v < Random()
) until ( c-g(x)-v< flx) )

x is a sample from X
proportionally drawn with f(x)




General Acceptance-Rejection Theorem — Summary

» An accept-reject algorithm for arbitrary - G () the IDF f )
iven u e or g(x),

probability distributions with ellusive or F(x), and ¢>0 such that
inefficient F~!(x) implementations. F(x) <c-glx) over X:
> Requires (at least) two Random() calls and B
a G~!(u) evaluation per iteration repeat |
u < Random()
x4 G (u)

v < Random()
) until ( c-g(x)-v< flx) )

x is a sample from X
proportionally drawn with f(x)



General Acceptance-Rejection Theorem — Summary

» An accept-reject algorithm for arbitrary

- —1
e e . . he IDF f ,
probability distributions with ellusive or Given G “(u) the or g(x)

f(x), and ¢>0 such that

inefficient F~!(x) implementations. F(¥) <c-g(x) over X:
> Requires (at least) two Random() calls and
a G~!(u) evaluation per iteration repeat |
» What do we look for in a g(x) and G1? u + Random()
Why not simply use x4 G (u)
v < Random()
c-g(x):m)a(le(x) ) until ( c-g(x)-v<f(x) )

x 1s a sample from X

in which case g(x) is the uniform proportionally drawn with f(x)

distribution over X.



General Acceptance-Rejection Theorem — Summary

» An accept-reject algorithm for arbitrary

e ) ) Gi G! the IDF f ,
probability distributions with ellusive or pven (u) the or g(x)

f(x), and ¢>0 such that

inefficient F~!(x) implementations. Fx) <c-g(x) over X:
> Requires (at least) two Random() calls and
a G~!(u) evaluation per iteration repeat |
» What do we look for in a g(x) and G~1? u < Random()
Why not simply use x4 G (u)
v < Random()
c-g(x):m)a(le(x) ) until ( c-g(x)-v< flx) )

x is a sample from X

in which case g(x) is the uniform proportionally drawn with f(x)

distribution over X.

First, and importantly, if f(x) has an infinite tail, g(x) = 0 over X and we can’t possibly find a
satisfying ¢ > 0.



General Acceptance-Rejection Theorem — Summary

» An accept-reject algorithm for arbitrary

- —1
a2 . . he IDF f ,
probability distributions with ellusive or Given G (u) the or gl)

f(x), and ¢>0 such that

inefficient F~!(x) implementations. F(¥) <c-gx) over X:
» Requires (at least) two Random() calls and
a G~!(u) evaluation per iteration repeat |
» What do we look for in a g(x) and G~1? u < Random()
Why not simply use x4 G (u)
v < Random()
c-g(x):m)a(le(x) ) until ( c-g(x)-v<f(x) )

x is a sample from X

in which case g(x) is the uniform proportionally drawn with f(x)

distribution over X.
More pragmatically, we want ¢ to be as small as possible, in other words we want g(x) to closely
match f(x) — since larger cs means more reject loops through the failed predicate

c-gx)v<f(x)=v
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