Lexicon of Notation

S Sample of population generated by algorithm
n=1S| Sample size desired (not gauranteed by all algorithms)
A A population to sample from with random access, think Array
P A population to sample from without random access
m=|P|,m=|4| Size of population (not always known for P)
alil, a;,a;j ... Anelementof 4 or P
i, j Loop indices
Get (&var, P, loc) retrieval from a sequential access collection
Put (&var, S, loc) store into a sequential access collection

» The & of Get and Put is an “address of”” operator borrowed from C, C++
» The loc argument of Get and Put is technically unneeded, think “get next element
and a “push” or “append” on a simple linked list.

29

Algorithm 6.5.1

Fisher-Yates Shuffling for Arrays

(You’ve probably seen this before. . .)

Algorithm 6.5.1

@ The intuitive way to generate a random shuffle of A is:
o draw the first element ag at random from A
@ draw the second element a; at random from A — {ao}
@ draw the third a at random from A — {ao, a1}, etc.

@ An in place algorithm:

Algorithm 6.5.1

for(i = 0; i <m - 1; i++){
j = Equilikely(i, m - 1);

hold = aljl;
aljl = alil; /* swap alil and al[jl*/
al[i] = hold;

The algorithm assumes A is stored in array a

@ Algorithm 6.5.1 is an excellent example of the elegance of
simplicity.

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling

Algorithm 6.5.3

Use Fisher-Yates for sampling
without replacement into array x[].

Example 6.5.3

@ Suppose the population and sample are stored as arrays
al0], a[1],...,a[m — 1] and x[0], x[1], ..., x[n — 1] respectively
@ Algorithm 6.5.3 is equivalent to

Example 6.5.3

for(i = 0; i < n; i++){
j = Equilikely(i, m - 1);

x[i] = al[jl;
aljl = alil;
alil = x[il;

@ Algorithm 6.5.3 is a simple extension of Algorithm 6.5.1

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling

Algorithm 6.5.4

Sampling without replacement with
unknown population size.

Population P without random access.

Algorithm 6.5.4

i=20; j=0;
while(more data in P){
Get(&z, P, j); /* sequential access */
jtts
if (Bernoulli(p)){
Put(z, S, i);
it+;

il

@ Order is preserved

@ Each element of P is selected, independently, with probability
p

@ Algorithm 6.5.4 does not make use of either m or n explicitly

¢ m may be unknown
@ Sample size n is a Binomial(m, p) random variate

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling

Algorithm 6.5.5

Sampling without replacement with
known population size |P| and
a fixed sample size.

Population P without random access.

Offered without proof. .. not that hard to work out independently.

Algorithm 6.5.5

Algorithm 6.5.5
i=20;j=0;
while(i < n){
Get(&z, P, j); /* sequential access */
p=(@-1i) / (m - j);
jt+s
if (Bernoulli(p)){
Put(z, S, i);
it

>

@ m = |P| is known. Order is preserved.
@ The key is that a; is selected with a probability (n—i)/(m —j)
@ Number of possible samples is m!/(m — n)!n!

@ All samples are equally likely to be generated

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling

Algorithm 6.5.6: Reservoir Sampling

It seems that when sampling from a sequential stream (Get(&z, P, j)), we need to:
» Know the size of the population (|P|) (alg 6.5.6), or
> accept a variable sized sample (alg 6.5.4)

Algorithm 6.5.6: Reservoir Sampling

It seems that when sampling from a sequential stream (Get(&z, P, j)), we need to:
» Know the size of the population (|P|) (alg 6.5.6), or
> accept a variable sized sample (alg 6.5.4)

Not so!

» Reservoir Sampling techniques sample without replacement,
> for a fixed sample size.
» Population P without random access and unknown size.

Algorithm 6.5.6

@ Sequential random sampling without replacement, unknown m

Algorithm 6.5.6

for (i = 0; i < n; i++){
Get(&z, P, i); /* sequential access */
Put(z, S, i);
}
j =n;
while (more data in P){
Get(&z, P, j); /* sequential access */
jtts
p=mn/7j;
if (Bernoulli(p)){
i = Equilikely (0, n -1);
Put(z, S, i);

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling

