
Lexicon of Notation

S Sample of population generated by algorithm

n = |S | Sample size desired (not gauranteed by all algorithms)

A A population to sample from with random access, think Array

P A population to sample from without random access

m = |P |, m = |A | Size of population (not always known for P)

a[i], ai, a j . . . An element of A or P

i, j Loop indices

Get(&var,P,loc) retrieval from a sequential access collection

Put(&var,S,loc) store into a sequential access collection

◮ The & of Get and Put is an “address of” operator borrowed from C, C++
◮ The loc argument of Get and Put is technically unneeded, think “get next element”

and a “push” or “append” on a simple linked list.

Algorithm 6.5.1

Fisher-Yates Shuffling for Arrays

(You’ve probably seen this before. . .)

Algorithm 6.5.1

The intuitive way to generate a random shuffle of A is:
draw the first element a0 at random from A
draw the second element a1 at random from A − {a0}
draw the third a2 at random from A− {a0, a1}, etc.

An in place algorithm:

Algorithm 6.5.1

for(i = 0; i < m - 1; i++){
j = Equilikely(i, m - 1);

hold = a[j];

a[j] = a[i]; /* swap a[i] and a[j]*/

a[i] = hold;

}

The algorithm assumes A is stored in array a

Algorithm 6.5.1 is an excellent example of the elegance of
simplicity.

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling 3/1

Algorithm 6.5.3

Use Fisher-Yates for sampling

without replacement into array x[].

Example 6.5.3

Suppose the population and sample are stored as arrays
a[0], a[1], . . . , a[m − 1] and x [0], x [1], . . . , x [n − 1] respectively

Algorithm 6.5.3 is equivalent to

Example 6.5.3

for(i = 0; i < n; i++){
j = Equilikely(i, m - 1);

x[i] = a[j];

a[j] = a[i];

a[i] = x[i];

}

Algorithm 6.5.3 is a simple extension of Algorithm 6.5.1

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling 11/1

Algorithm 6.5.4

Sampling without replacement with

unknown population size.

Population P without random access.

Algorithm 6.5.4

Algorithm 6.5.4

i = 0; j = 0;

while(more data in P){
Get(&z, P, j); /* sequential access */

j++;

if (Bernoulli(p)){
Put(z, S, i);

i++;

}
}

Order is preserved

Each element of P is selected, independently, with probability
p

Algorithm 6.5.4 does not make use of either m or n explicitly
m may be unknown
Sample size n is a Binomial(m, p) random variate

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling 13/1

Algorithm 6.5.5

Sampling without replacement with

known population size |P | and

a fixed sample size.

Population P without random access.

Offered without proof. . . not that hard to work out independently.

Algorithm 6.5.5

Algorithm 6.5.5

i = 0; j = 0;

while(i < n){
Get(&z, P, j); /* sequential access */

p = (n - i) / (m - j);

j++;

if (Bernoulli(p)){
Put(z, S, i);

i++;

}
}

m = |P| is known. Order is preserved.

The key is that aj is selected with a probability (n− i)/(m− j)

Number of possible samples is m!/(m − n)!n!

All samples are equally likely to be generated

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling 16/1

Algorithm 6.5.6: Reservoir Sampling

It seems that when sampling from a sequential stream (Get(&z,P , j)), we need to:

◮ Know the size of the population (|P |) (alg 6.5.6), or
◮ accept a variable sized sample (alg 6.5.4)

Algorithm 6.5.6: Reservoir Sampling

It seems that when sampling from a sequential stream (Get(&z,P , j)), we need to:

◮ Know the size of the population (|P |) (alg 6.5.6), or
◮ accept a variable sized sample (alg 6.5.4)

Not so!

◮ Reservoir Sampling techniques sample without replacement,
◮ for a fixed sample size.
◮ Population P without random access and unknown size.

Algorithm 6.5.6

Sequential random sampling without replacement, unknown m

Algorithm 6.5.6

for (i = 0; i < n; i++){
Get(&z, P, i); /* sequential access */

Put(z, S, i);

}
j = n;

while (more data in P){
Get(&z, P, j); /* sequential access */

j++;

p = n / j;

if (Bernoulli(p)){
i = Equilikely(0, n -1);

Put(z, S, i);

}
}

Discrete-Event Simulation: A First Course Section 6.5: Random Sampling and Shuffling 18/1

