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Let’s Regress a Bit

This is the least squares linear regres-

sion line for the (ui,vi) data plotted.

V =mU+b m= r
sv

su

b= v̄−mū

Where r is Pearson’s correlation coeffi-

cent and su, sv are the sample standard

deviations of the ui’s and the vi’s.
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How are these equations derived? Specifically, what assumptions are made about the bivariate

(ui,vi) data pairs?



Least Squares Regression

The assumption behind least squares

regression is that there is little or no

measurement error of the independent

variable (ui), but there is measurement

error or experimental “noise” in the

dependent variable (vi).

Least squares regression equations

determine the “best fit line” that

minimizes the vertical distances from

data points to line.
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But in the same spirit that we discount the notion of outliers in simulation results, we must

recognize these assumptions are inappropriate for simulation results.

Simulations don’t have “measurement error” in their outputs.



Orthogonal Least Squares Regression (MSOD)

Instead we want to minimize the dis-

tance to the best fit line across the full

2d plane, in both ui and vi directions.

It is still a Minimization process,

it still minimizes the sum of Squared

Distances between points and line,

but now these “distance” line segments

intersect the line at an

Orthogonal 90°.

Hence MSOD regression or “best fit”

lines.
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Orthogonal Least Squares

Given the sample averages ū, v̄, Cov(u,v) and

θ =
1

2
tan−1 (s2

u− s2
v ,2Cov(u,v))

for the bivariate sample (ui,vi)

The orthogonal least squares (MSOD) regression line is

V = (tanθ)U +(v̄− ū tanθ)

Where by convention −π < tan−1(x,y) ≤ π and −π
2
< θ≤ π

2
(hint: use atan2).

And what, pray tell, is Cov(u,v)?



The Covariance of a Bivariate Set (ui,vi)

The conventional equation for Covariance

Cov(ui,vi) =
1

n
Σ(ui− ū)(vi− v̄)

What does the covariance tell us about a data set? How does it “work?”
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The Covariance of a Bivariate Set (ui,vi)

i ui vi (ui− ū) (vi− v̄)

1 2 3 – –
2 3 1 – –
3 4 3 – –
4 4 4 – +
5 6 6 + +
6 7 5 + + 1
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ū

v̄

A large + covariance → most of the pairs in mean-relative quadrants I & III

A large – covariance → most of the pairs in mean-relative quadrants II & IV



Welford’s Equation for Cov(ui,vi)

The conventional equation for Covariance

Cov(ui,vi) =
1

n
Σ(ui− ū)(vi− v̄)

But we (of course) want to use a Welford styled iterative approach: wi is i·Cov(ui,vi) for the first i

pairs of data points.

wi = wi−1+

(
i−1

i

)
(ui− ūi−1)(vi− v̄i−1)

here ūi and v̄i are the (Welford maintained) averages of the first i data points.



Correlation



r, Pearson’s Correlation Coefficient

Linear correlation is covariance “normalized” by the spread in the data — a more universal

measure:

Cov(ui,vi) =
1

n
Σ(ui− ū)(vi− v̄) r =

Cov(ui,vi)

susv

Welford equations (ri is the value of r after i data points):

wi = wi−1+

(
i−1

i

)
(ui− ūi−1)(vi− v̄i−1) ri =

wi

i·sui
·svi

r, the linear correlation coefficent, measures the linearly predictive nature of some variable set

(ui) to its pairwise “dependent” set (vi).



Serial Correlation & Auto Correlation



Serial Correlation

Serial correlation (aka “autocorrelation”) uses the tools of bivariate (ui,vi) data sets on a lagged

version of one data set (xi).

i xi

1 5
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Serial Correlation

Serial correlation (aka “autocorrelation”) uses the tools of bivariate (ui,vi) data sets on a lagged

version of one data set (xi).

For a lag of j, we think of xi as the independent data set, and the xi+ js as their dependent data set,

forming bivariate data points (xi,xi+ j).

For a lag of j = 1. . .

i xi (xi,xi+1)
1 5 (5,7)
2 7 (7,6)
3 6 (6,1)
4 1 (1,3)
5 3 (3,2)
6 2 (2,0)
7 0 (0,7)
8 7 (7,2)
9 2
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Serial Correlation

Like covariance and correlation, most of the pairs in mean-relative quadrants I & III suggests

postive serial correlation.

Due to the nature of this formulation and the

implicit time related ordering of the xi, we only

consider sequenced data for this type of analysis.

For example, we never apply serial correlation

analysis to Monte Carlo estimates or aggregate

statistics of many individual simulations.

We apply serial correlation analysis on metrics

generated from within our simulation as the

simulation progresses in (simulated) time.
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Negative Serial Correlation?

Discuss: what would the (i,xi) plot look like for a data set with negative serial correlation

(assume a lag of j = 1, so correlation among (xi,xi+1))?
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Discuss: what would the (i,xi) plot look like for a data set with negative serial correlation

(assume a lag of j = 1, so correlation among (xi,xi+1))?
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Work backwards!

For negative serial correlation, we want the

majority of points to be in mean-relative

quadrants II & IV.

The points in II have an independent coordinate

(xi) below x̄, and the dependent coordinate (xi+1)

above x̄.

What’s the relationship for points in IV?



Negative Serial Correlation?

Discuss: what would the (i,xi) plot look like for a data set with negative serial correlation

(assume a lag of j = 1, so correlation among (xi,xi+1))?
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This creates a pattern of flip-flops across x̄ as i (sample number) increases.



± Serial Correlation — Why do we care?

Why do we need to know about positive or negative serial correlation for the art of

computer simulation?

We often need to generate averages and confidence intervals for averages emanating

from our simulation. For instance we want to determine a 95% confidence interval for the

average sojourn time (w̄) of jobs through an SSQ.

The confidence interval techniques learned in an intro statistics course use the Central

Limit Theorem, the the CLT requires iid samples!

iid = independent and identically distributed

While the wi of each SSQ job might be sampled from the same probability distribution,

the samples are clearly not independent!



Example 4.1.7: Serial Correlation
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The authors show that a positive serial correlation creates an “underestimated” (bias) s compared

to the true theoretical σ for the system

→ confidence intervals will be too small

As it turns out negative serial correlation creates an “overestimated” s (again compared to the

true σ of the system)

→ confidence intervals will be too big

Bias in either direction can exist — the critical point is that we no longer have independent xi, so

our simple statistical conclusions (eg: confidence intervals) may not work out so well.

Important: s is the correct value for each data set!1It is when we go from s to CLT confidence

intervals that the flaw creeps in. With CLT we are assuming iid data points! s does not require iid

(it’s just an equation), the standard CLT construction of confidence intervals does.

1Which is why I used “quotes” in the first two statements of this slide!

There are ways around this CI generating limitations, see Appendix F for all the intricate details. . . Not a course requirement, I’m just saying it’s there.



Correlation Exhaustion

Serial or Auto-correlation Conventional pairwise analysis but with one data set (ui = xi,vi = xi+ j),
a “ j-lagged” pairing to itself.

Does the i-th value “predict” the j-th subsequent value?

Positive Serial Correlation When clusters (plural!) of data points fall above or below x̄.

The canonical example in computer simulation is sojourn times of jobs through an

SSQ with traffic intensity ≈ 1.

Negative Serial Correlation When the components of the j-lagged pairings (xi,xi+ j) consistently

lie on either side of x̄. In the case of j = 1, the xi data points consistently fall on

alternating sides of x̄.

For all of these j usually small.



Approximate One-Pass Autocovariance

Given that the two-pass equation for the sample autocovariance of x with lag j is:

c j =
1

n− j

n− j

∑
i=1

(xi− x̄)(xi+ j− x̄)

where x̄ is the sample mean of all xi. The natural one-pass analogue is

ĉ j =

[
1

n− j

n− j

∑
i=1

xi xi+ j

]
− x̄ 2

Notes:

1. These are not algebraically equivilant,

2. Better to use the Welford equations for wi = i ·Cov(u,v) (which is also not algebraically

equivilant but at least numerically stable).
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