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Welford One Pass x̄i and vi

Definitions to begin with (not the Welford equations):

x̄i =
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Equation (6) is the arithmetic mean of sample X = {x1,x2, . . . ,xi}, equation (7) is the (algebraically correct but nu-

merically challenged) one-pass variance, and equation (8) is X ’s variance multiplied by i. Equation (8) is simply the

expanded notation of one pass difference of squares (5).

Welford One Pass x̄i Derivation

Begin with eqn 6. . .

x̄i =
1

i
(x1+ x2+ · · ·+ xi)

. . . and recognize x̄i−1 inside of it...

ix̄i = x1 + x2+ · · ·+ xi−1︸ ︷︷ ︸
(i−1) x̄i−1

+xi

ix̄i = (i−1)x̄i−1+ xi

ix̄i = ix̄i−1− x̄i−1+ xi

. . . collect terms without the i factor:

ix̄i = ix̄i−1 +(xi− x̄i−1)

. . . solve for x̄i

x̄i = x̄i−1+
1

i
(xi− x̄i−1) (9)

Observe that with x0 ≡ 0 equation 9 at x1 is x̄1 = 0+ 1
1
(x1 −0) = x1.
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Welford One Pass vi Derivation

Begin with equation 8. . .
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and (like Welford x̄i derivation) think of x
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i−1 in terms of vi−1:
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move to lhs
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substitute (11) into (10) for x
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distribute. . .
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factor i out of terms . . .
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(
x̄

2
i
− x̄

2
i−1

)
+
(
x

2
i
− x̄

2
i−1

)
we have two separate differences of squares, factor! . . .

vi = vi−1− i(x̄i − x̄i−1)︸ ︷︷ ︸
ugh

(x̄i+ x̄i−1)+(xi − x̄i−1) (xi+ x̄i−1) (12)

Equation (12) would be factorable if we had xi instead of x̄i. Let’s fix that now: recall Welford equation 9, solved for

(x̄i − x̄i−1):

x̄i = x̄i−1+
1

i
(xi − x̄i−1)

(x̄i− x̄i−1) =
1

i
(xi − x̄i−1) (13)

Substitute (13) into (12), the i

i
cancel . . .

vi = vi−1− i

{
1

i
(xi − x̄i−1)

}
(x̄i+ x̄i−1)+(xi− x̄i−1)(xi+ x̄i−1) (14)

Why did we do this? To get two (xi − x̄x−1) for factoring! Rearranging terms to the right of vi−1 in positive first

order. . .

vi = vi−1 +(xi− x̄i−1)(xi+ x̄i−1)− (xi− x̄i−1)(x̄i+ x̄i−1)

vi = vi−1+(xi − x̄i−1){(xi+ x̄i−1)− (x̄i+ x̄i−1)}
vi = vi−1+(xi − x̄i−1) (xi− x̄i)

Aside from xi, we want all the RHS terms to be from the previous iteration (i− 1), so use Welford’s equation (9) to

replace x̄i . . .

2



vi = vi−1+(xi − x̄i−1)

(
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}
Notice the pattern α = xi − x̄i−1 in the RHS expression . . .

α
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and we have Welford’s equation for vi = i ·Vari:

vi = vi−1+
i−1

i
(xi − x̄i−1)

2
(15)

Observe that (with x0 ≡ 0 and v0 ≡ 0) at i = 1 (the first datapoint) v1 = 0+ 1−1
1
(x1 −0)2 = 0.
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