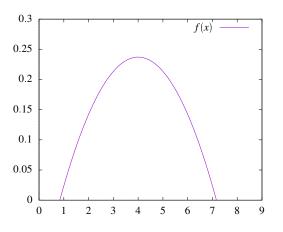

f(x) — the probability density function of some random variable X

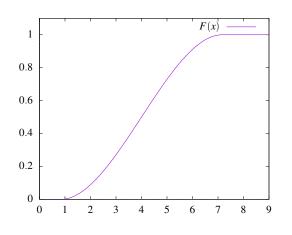

f(x) is defined over its **supporting set** (domain), and $f(x) \ge 0$ over its supporting set.

(Approximately) what is the Pr(X = 5)?

f(x) — the probability density function of some *random variable* X

f(x) is defined over its **supporting set** (domain), and $f(x) \ge 0$ over its supporting set.

(Approximately) what is the Pr(X = 5)?


We can't answer this question for **continuous probability distributions**.

We can say

$$Pr(X < 5) \equiv Pr(X \le 5)$$

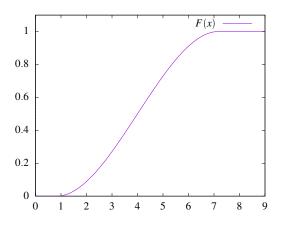
= Area below $f(x)$ up to $x = 5$

F(x) — the cumulative distribution function of f(x)

F(x) is an **increasing function** defined over $(-\infty, +\infty)$, and its range is limited to $0 \le F(x) \le 1$

We use the CDF F(x) to determine the probability that a random variable X falls within some interval.

$$Pr(X < 5) \equiv Pr(X \le 5)$$


$$= F(5)$$

$$Pr(X \ge 5) = 1 - F(5)$$

$$Pr(\pi < X < 6) = F(6) - F(\pi)$$

F(x) — the cumulative distribution function of f(x)

F(x) is an **increasing function** defined over $(-\infty, +\infty)$, and its range is limited to $0 \le F(x) \le 1$

F(x) is important!

1. Its range is [0,1], which fits nicely together with pRNG routines that provide

$$u \leftarrow Random() \quad 0 < u < 1$$

2. If F(x) is invertible, it's the best way to generate random values in the supporting set that "follow" the distribution f(x).