From the “Need to Know” Department

Important Concepts in SSQs

use tw ival” ures, i :
We use two “arrival” measures, they are inverses of each other
Arrival Rate  (jobs per unit time) A=

n

Average interarrival time (time between jobs) 7=

Utilization, the time domain average of the “server component”, X can also be considered the
probability that there is at least one job in the SSQ:

Pr(1()>0)

Integration of NES or DES measures is simply the sum of rectangles, by the very nature of
DES.



Time-Averaged Statistics

@ All three functions are piece-wise constant

4
3
w2ck /.- /=
0= t
0 376

s Figures for g(-) and x(-) can be deduced

q(t) =0 and x(t) = 0 if and only if /(t) =0
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Little's Theorem

How are job-averaged and time-average statistics related?

Theorem (Little, 1961)

If (a) queue discipline is FIFO,
(b) service node capacity is infinite, and
(c) server is idle both at t =0 and t = ¢,
then

Jo i(t)dt =37 wi  and

OC” q(t)dt =37 d; and

Jo x()dt =377y si
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From the “Makin’ it R Department

Proof
We want to show:

/Ocnl(t)dt:iw,-

Define an indicator function:
. (t) . 1 ag<t<c
Vill) = 0 otherwise

y;(¢) “lights up” when job i is in the SSQ at time . So we can write /(¢) (the number of jobs in the
SSQ at time ¢) as

I(t) =

yi(t) 0<t<ecy

™=

1



From the “Makin’ it R Department

Proof ...

... taking the integral and rearranging the RHS:

/Ocn I(t)dt

[ L witoyar (1)
0 =1

Cn
Z / y;(t)dt integral of sums is the sum of integrals )
= Jo

1(c; —a;) each [;(¢) is a rectangle of width ¢; —a; (height 1 job) (3)

n
ZW,‘ Ww; =¢; —da; O (4)



Little's Equations

@ Using 7 = ¢, in the definition of the time-averaged statistics,
along with Little's Theorem, we have

Cn n
c,,7:/ I(t)dt => " wi = nw
0 i=1

@ We can perform similar operations and ultimately have

7:<£>W and 6:<£>3 and 7:<£>§
Ch Cn Cn
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Traffic Intensity

o Traffic intensity: ratio of arrival rate to service rate
1/7 5 Cn\ —
_— = = = —_— X
an/n an

1/3
@ Assuming c,/a, is close to 1.0, the traffic intensity and
utilization will be nearly equal

Sl »l
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From the “Thinking Intensly of Traffic” Department

Traffic Intensity provides a single metric by which we can classify FIFO SSQs:

1/F 5 >1 ?27?7?

Traffic Intensity = I /r i =< ~1 7
§ T

<1 7



From the “Thinking Intensly of Traffic” Department

Traffic Intensity provides a single metric by which we can classify FIFO SSQs:

|7 >1 g0t 1)1
i~

Traffic Intensity = 1 /_ = i =< =1
7 _
<1l gqt)y=0 x<1



From the “Thinking Intensly of Traffic” Department

Traffic Intensity provides a single metric by which we can classify FIFO SSQs:

1/7 > 1 (queue blows up)

. K .
Traffic Intensity = — =-=<¢ ~1  very efficient
1/ s r <1 waste of resources?



From the “Thinking Intensly of Traffic” Department

Traffic Intensity provides a single metric by which we can classify FIFO SSQs:

1/7 > 1 (queue blows up)

. K .
Traffic Intensity = — =-=<¢ ~1  very efficient
1/ s r <1 waste of resources?

It appears that for “well behaved” FIFO SSQs:

Traffic Intensity ~ x



From the “Thinking Intensly of Traffic” Department

Let’s look at the cases that don’t blow up...

s s ns

1/7
Traffic Intensity = # === =
§ r ay/n a,

Substituting the “average” Little’s equations (author slide 23/1):

_ ny _ _ _
x=—1)§ = cXx=ns
Cn

And we have B
Traffic Intensity = n_ (C—"> x
an a,

And we have proved the somewhat non-intuitive equation on author’s slide 26/1 ...
Hint: it must be a well-behaved FIFO SSQ “at steady state”.

What is ¢,,? What is a,,?
So if Z—" ~ 1 we can surmise
n

Traffic Intensity ~ X



From the “Thinking Intensly of Traffic” Department

Looking a little deeper into when < ~ 1 ...

Y
an

Suppose traffic intensity is well behaved (= or < 1) and service times are bounded s; < B, a first
job arriving at a; = 3 would have
Cq 3+B B
— <=1+
aq 3 3

which is possibly quite large.
The same fraction for job n = 1000 is arguably closer to 1:

1+ 5
1000
Since s; < B, eventually for well behaved SSQs (queue not steadily growing) the difference
between ¢, and a, becomes very very small relative to the total SSQ lifetime. A doesn’t matter
when we consider efficient, well-behaved, long-lived SSQs.

(Sounds like we need a lim,,_,.)



From the “Thinking Intensly of Traffic” Department

Looking a little deeper into when % ~1...

n

. Ch—a
lim =———= = 0
n—ee
. c a
lim =~ -2 = 0
n—e N n
c a
lim =2 = lim =
n—e n n—e n
And in the “steady state” (n — o),
Cn ay _ . . ..
L=, ==y (A the arrival rate, jobs per unit time)
n n

Cn Cn CVZ

[=xw g=Md T=A5

become



Sven and Larry's Ice Cream Shoppe
@ owners considering adding new flavors and cone options

@ concerned about resulting service times and queue length

Can be modeled as a single-sever queue

® ssql.dat represents 1000 customer interactions
@ Multiply each service time by a constant

o In the following graph, the circled point uses unmodified data
@ Moving right, constants are 1.05, 1.10, 1.15, ...
@ Moving left, constants are 0.95, 0.90, 0.85, ...
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Sven and Larry
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@ Modest increase in service time produces significant increase
in queue length

@ Non-linear relationship between G and X

@ Sven and Larry will have to assess the impact of the increased
service times
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From the “Hagen Daz perspective” Department

Another Way to Think of this Approach

The authors generate the graph of g vs ¥ by multiplying service times by a constant factor.

When they generated the data point for 0.95s;, what traffic intensity is represented by the data
point?



From the “Hagen Daz perspective” Department

Another Way to Think of this Approach

The authors generate the graph of g vs ¥ by multiplying service times by a constant factor.

When they generated the data point for 0.95s;, what traffic intensity is represented by the data
point?

1/F 3
Traffic Intensity = Lr_ = i
/s F
S0 95% service rate is a traffic intensity of
%3 -
95_0S _ 959, i
r r

or 95% of the real world (trace) data.

Note: they didn’t change the trace data arrival times, just the service times.



Graphical Considerations
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@ Since both X and g are continuous, we could calculate an
“infinite” number of points

@ Few would question the validity of “connecting the dots”
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@ If there is essentially no uncertainty and the resulting
interpolating curve is smooth, connecting the dots is OK

o Leave the dots as a reminder of the data points

@ If there is essentially no uncertainty but the curve is not
smooth, more dots should be generated

@ If the dots correspond to uncertain (noisy) data, then
interpolation is not justified

o Use approximation of a curve or do not superimpose at all

@ Discrete data should never have a solid curve
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