Important Concepts in SSQs

We use two "arrival" measures, they are inverses of each other:

Arrival Rate (jobs per unit time)
$$\lambda = \frac{n}{a_n}$$

Average interarrival time (time between jobs) $\bar{r} = \frac{a_n}{n}$

Utilization, the time domain average of the "server component", \bar{x} can also be considered the probability that there is at least one job in the SSQ:

$$Pr(\ l(t) > 0\)$$

Integration of NES or DES measures is simply the sum of rectangles, by the very nature of DES.

Time-Averaged Statistics

• All three functions are piece-wise constant

• Figures for $q(\cdot)$ and $x(\cdot)$ can be deduced

$$q(t) = 0$$
 and $x(t) = 0$ if and only if $I(t) = 0$

Little's Theorem

How are job-averaged and time-average statistics related?

Theorem (Little, 1961)

- If (a) queue discipline is FIFO,
 - (b) service node capacity is infinite, and
- (c) server is idle both at t=0 and $t=c_n$ then

$$\int_0^{c_n} l(t)dt = \sum_{i=1}^n w_i \qquad \text{and}$$

$$\int_0^{c_n} q(t)dt = \sum_{i=1}^n d_i \qquad \text{and}$$

$$\int_0^{c_n} x(t)dt = \sum_{i=1}^n s_i$$

Proof

We want to show:

$$\int_0^{c_n} l(t) \, \mathrm{d}t = \sum_i^n w_i$$

Define an indicator function:

$$\psi_i(t) = \begin{cases} 1 & a_i < t < c_i \\ 0 & \text{otherwise} \end{cases}$$

 $\psi_i(t)$ "lights up" when job i is in the SSQ at time t. So we can write l(t) (the number of jobs in the SSQ at time t) as

$$l(t) = \sum_{i=1}^{n} \psi_i(t) \quad 0 < t < c_n$$

Proof ...

... taking the integral and rearranging the RHS:

$$\int_{0}^{c_{n}} l(t) dt = \int_{0}^{c_{n}} \sum_{i=1}^{n} \psi_{i}(t) dt$$

$$= \sum_{i=1}^{n} \int_{0}^{c_{n}} \psi_{i}(t) dt \text{ integral of sums is the sum of integrals}$$

$$= \sum_{i=1}^{n} 1(c_{i} - a_{i}) \text{ each } \int \psi_{i}(t) \text{ is a rectangle of width } c_{i} - a_{i} \text{ (height 1 job)}$$
(3)

$$= \sum_{i=1}^{n} w_i \qquad w_i = c_i - a_i \quad \square \tag{4}$$

Little's Equations

• Using $\tau = c_n$ in the definition of the time-averaged statistics, along with Little's Theorem, we have

$$c_n \overline{l} = \int_0^{c_n} l(t) dt = \sum_{i=1}^n w_i = n \overline{w}$$

We can perform similar operations and ultimately have

$$\overline{I} = \left(\frac{n}{c_n}\right)\overline{w}$$
 and $\overline{q} = \left(\frac{n}{c_n}\right)\overline{d}$ and $\overline{x} = \left(\frac{n}{c_n}\right)\overline{s}$

Traffic Intensity

Traffic intensity: ratio of arrival rate to service rate

$$\frac{1/\overline{r}}{1/\overline{s}} = \frac{\overline{s}}{\overline{r}} = \frac{\overline{s}}{a_n/n} = \left(\frac{c_n}{a_n}\right)\overline{x}$$

• Assuming c_n/a_n is close to 1.0, the traffic intensity and utilization will be nearly equal

Traffic Intensity =
$$\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}} = \begin{cases} > 1 & ???\\ \approx 1 & ???\\ < 1 & ??? \end{cases}$$

Traffic Intensity
$$=\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}} = \begin{cases} >1 & q(t) \uparrow & l(t) \uparrow \\ \approx 1 & \bar{x} \approx 1 \\ <1 & q(t) \approx 0 & \bar{x} < 1 \end{cases}$$

Traffic Intensity =
$$\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}} = \begin{cases} > 1 & \text{(queue blows up)} \\ \approx 1 & \text{very efficient} \\ < 1 & \text{waste of resources?} \end{cases}$$

Traffic Intensity =
$$\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}} = \begin{cases} > 1 & \text{(queue blows up)} \\ \approx 1 & \text{very efficient} \\ < 1 & \text{waste of resources?} \end{cases}$$

It appears that for "well behaved" FIFO SSQs:

Traffic Intensity $\approx \bar{x}$

Let's look at the cases that don't blow up...

Traffic Intensity
$$=\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}} = \frac{\bar{s}}{a_n/n} = \frac{n\bar{s}}{a_n}$$

Substituting the "average" Little's equations (author slide 23/1):

$$\bar{x} = \left(\frac{n}{c_n}\right)\bar{s} \quad \Rightarrow \quad c_n\bar{x} = n\bar{s}$$

And we have

Traffic Intensity
$$=\frac{n\bar{s}}{a_n} = \left(\frac{c_n}{a_n}\right)\bar{x}$$

And we have proved the somewhat non-intuitive equation on author's slide 26/1 ... Hint: it must be a well-behaved FIFO SSQ "at steady state".

What is c_n ? What is a_n ?

So if $\frac{c_n}{a_n} \approx 1$ we can surmise

Traffic Intensity $\approx \bar{x}$

Looking a little deeper into when $\frac{c_n}{a_n} \approx 1 \dots$

Suppose traffic intensity is well behaved (\approx or < 1) and service times are bounded $s_i < B$, a first job arriving at $a_1 = 3$ would have

$$\frac{c_1}{a_1} < \frac{3+B}{3} = 1 + \frac{B}{3}$$

which is possibly quite large.

The same fraction for job n = 1000 is arguably closer to 1:

$$1 + \frac{B}{1000}$$

Since $s_i < B$, eventually for well behaved SSQs (queue not steadily growing) the difference between c_n and a_n becomes very very small relative to the total SSQ lifetime. λ doesn't matter when we consider efficient, well-behaved, long-lived SSQs.

(Sounds like we need a $\lim_{n\to\infty}$)

Looking a little deeper into when $\frac{c_n}{a_n} \approx 1 \dots$

$$\lim_{n \to \infty} \frac{c_n - a_n}{n} = 0$$

$$\lim_{n \to \infty} \frac{c_n}{n} - \frac{a_n}{n} = 0$$

$$\lim_{n \to \infty} \frac{c_n}{n} = \lim_{n \to \infty} \frac{a_n}{n}$$

And in the "steady state" $(n \to \infty)$,

$$\frac{c_n}{n} = \frac{a_n}{n} = \bar{r} = \frac{1}{\lambda}$$
 (λ the arrival rate, jobs per unit time)

... and Little's "average" equations

$$\bar{l} = \left(\frac{n}{c_n}\right)\bar{w}$$
 $\bar{q} = \left(\frac{n}{c_n}\right)\bar{d}$ $\bar{x} = \left(\frac{n}{c_n}\right)\bar{s}$

become

$$\bar{l} = \lambda \bar{w}$$
 $\bar{q} = \lambda \bar{d}$ $\bar{x} = \lambda \bar{s}$

Case Study

Sven and Larry's Ice Cream Shoppe

- owners considering adding new flavors and cone options
- concerned about resulting service times and queue length

Can be modeled as a single-sever queue

- ssq1.dat represents 1000 customer interactions
- Multiply each service time by a constant
 - In the following graph, the circled point uses unmodified data
 - Moving right, constants are 1.05, 1.10, 1.15, ...
 - Moving left, constants are 0.95, 0.90, 0.85, ...

Sven and Larry

- Modest increase in service time produces significant increase in queue length
 - Non-linear relationship between \overline{q} and \overline{x}
- Sven and Larry will have to assess the impact of the increased service times

Another Way to Think of this Approach

The authors generate the graph of \bar{q} vs \bar{x} by multiplying service times by a constant factor.

When they generated the data point for $0.95s_i$, what **traffic intensity** is represented by the data point?

Another Way to Think of this Approach

The authors generate the graph of \bar{q} vs \bar{x} by multiplying service times by a constant factor.

When they generated the data point for $0.95s_i$, what **traffic intensity** is represented by the data point?

Traffic Intensity
$$=$$
 $\frac{1/\bar{r}}{1/\bar{s}} = \frac{\bar{s}}{\bar{r}}$

So 95% service rate is a traffic intensity of

$$\frac{95\%\bar{s}}{\bar{r}} = 95\%\frac{\bar{s}}{\bar{r}}$$

or 95% of the real world (trace) data.

Note: they didn't change the trace data arrival times, just the service times.

Graphical Considerations

- Since both \overline{x} and \overline{q} are continuous, we could calculate an "infinite" number of points
- Few would question the validity of "connecting the dots"

Guidelines

- If there is essentially no uncertainty and the resulting interpolating curve is smooth, connecting the dots is OK
 - Leave the dots as a reminder of the data points
- If there is essentially no uncertainty but the curve is not smooth, more dots should be generated
- If the dots correspond to uncertain (noisy) data, then interpolation is not justified
 - Use approximation of a curve or do not superimpose at all
- Discrete data should never have a solid curve