
pRNGs

“Anyone who considers arithmetical methods of producing random

digits is, of course, in a state of sin.”

– John Von Neumann (1951)

pRNGs

A pseudo random number generator (pRNG) is a function that generates one number on each

invocation. Good pRNGs produce sequences of number that pass many statistical tests showing

there are no concerning patterns and correlations among the values. This property alone would

be sufficient to call them random number generators.

We will call this function Random(), its return value is usually u.

Random() produces a ℜeal number in the open interval (0,1).

In practice, not all languages and pRNG libraries have a Random() equivalent. The best do.

Worst case: write your own wrapper function to guarantee the ℜeal (0,1) result.

The minimal return type for Random() is an IEEE-754-1985 “double”.

Seeds

Before calling Random() in programming environments, the wise developer seeds the pRNG’s

underlying state machine with a value, typically a non-negative integer (although libraries can vary

in the extent of different acceptable seed types).

There is no common convention for the name of the “seeding” function, you’ll have to look it up

for your environment.

The seed value dictates the sequence of values generated by subsequent calls to Random(); at least

until it is re-seeded.

Seeds

Why do we say pseudo-RNG?

While

0.3230 0.540 0.764 0.920 0.70 0.93 0.430 0.3164

0.222 0.601 0.693 0.696 0.917 0.823 0.880 0.096

0.570 0.638 0.930 0.1027 0.780 0.3278 0.916 0.065

may look like a sequence of random numbers, if you can reproduce them at any time using a seed value 423

in Python3’s standard random module — they are decidedly not random.

ρ — the pRNG’s period

Random() can be called an unlimited number of times, but since we are working with finite digital

machines, the values themselves cannot be unlimited.

Eventually, pRNGs will “loop” around to the first value produced (after seeding) and then you

will notice the sequence will repeat itself.

The values from Random() don’t run in a line with an arrow on the end, instead they run in a

circle, eventually overlapping the starting point.

NOT A LINE . . .

0.323 0.764 0.920 0.7000.540

0.323

0.700

0.920

0.764

0.540

IT’S A CIRCLE

Example: C++

#include <cstdlib >

#include <iostream >

using namespace std;

// man pages: srand48(3) and drand48(3)

int main(int argc , char* argv[])

{

srand48(423);

/***

* BEWARE : drand48 returns values in [0,1), not (0,1)

*/

cout << drand48() << " "

<< drand48() << " "

<< drand48() << endl;

return 0;

}

Example: Java

import java.util.Random ;

public class example {

public static void main (String args[])

{

Random prng = new Random (423);

// BEWARE: nextDouble() returns values in [0,1),

// NOT (0,1)

System .out.format ("%f %f %f\n",

prng.nextDouble(),

prng.nextDouble(), prng.nextDouble ());

System .exit(0);

}

}

Example: Python 3

#!/usr/bin/env python3

import random

create pRNG object with seed as parameter

R = random .Random (423)

BEWARE ! .random () is a [0,1) value , NOT (0,1)

print(R.random (), R.random (), R.random ())

	From the ``Fake Numbers'' Department

