Stationary Arrival Processes

Generate n Arrival Times

» Generated using Exponential (u) interarrival times we don’t really do this in a simulation!
> u= 7{ where A = ?, average arrivals per time unit ap <0
P> Also called a homogeneous arrival process i<0
» The next arrival equation is repeat n times (
i1 ¢ a;i+ Exponential(%)

i—i+1
)

return aj,az,...,qa,

1
aj+1 = a; + Exponential <7_»>



Stationary Arrival Processes

Generate n Arrival Times

» Generated using Exponential (u) interarrival times we don’t really do this in a simulation!
> u= 7{ where A = ?, average arrivals per time unit ap <0
P> Also called a homogeneous arrival process i<0
» The next arrival equation is repeat n times (
i1 ¢ a;i+ Exponential(%)
. 1 i—i+1
aj+1 = a; + Exponential <7_»> )
return aj,as,...,a,

A convenient fiction, arrival processes are often time dependent: A(7).



Non-Stationary Arrival Processes

Let the average arrival rate vary with ¢, you are given A(z).

Convert this stationary arrival equation to a non-stationary one:

1
ai+1 = a; + Exponential (X)
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Non-Stationary Arrival Processes

Let the average arrival rate vary with ¢, you are given A(z).

Convert this stationary arrival equation to a non-stationary one:

1 1
ai+1 = a; + Exponential (X) ai+1 = a; + Exponential (W)

(where 1 is the simulation clock)

But does this technique actually work?



Compare Cumulative Arrivals between two techniques
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Clearly, there is evidence it doesn’t work. .. You’ll develop your own evidence in a future (next?)
LGA.
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Cumulative arrivals

Take 60s and discuss in your group — about how many simulations were required to generate the
cumulative arrival plot on the right? All the information is on this screen. ..



Compare Cumulative Arrivals between two techniques

X . Correct
Non-Stationary Arrival Rate A(f) Exponential (ﬁ) technique
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4500 - B
4000 - B
3500 B
3000 B
2500 - B
2000 - B
1500 |- B
1000 - B
500 B

0 . . . . . .
14 0 2 4 6 8 10 12 14

Simulation Time ¢ Simulation Time ¢

Cumulative arrivals

The left hand plot shows a rate vs time relationship — so the expected number of arrivals per
simulation is the area under the curve. About %(13 x 10) ~ 65 (or you could start dissecting the
areas of rectangles, triangles, and a trapezoid.. . ).

There are 5000 arrivals shown in the right hand plot, so about (%) ~ 100 simulations.



Correct Non-Stationary Arrival Techniques — Thinning Method
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Correct Non-Stationary Arrival Techniques — Thinning Method

A1)
apg <+ 0 Amax=1.8 ——
j s loop variable -
0 . v loop variable
repeat n times ( a; (loop test passed)
S < a; ‘ ‘ ‘
repeat ( 2 e o . . e s e e i
s < s+ Exponential (%) 1.5+ J
max
v Uniform(0,Amax) M) LF |
) until ( v<A(s) ) 0
Ajit1 S i 1
) i+—i+1 0 id o
ai,as,...,a, are arrival times 0 2 4 6 8 10

Simulation time ¢
What is the optimal choice for Apax? max; A(7)

How many times did the innermost loop instructions run for as? 2



Let’s talk: lga-crv-applications ...



Correct Non-Stationary Arrival Techniques — Inversion Method

Introducing the Cumulative Arrival Function A(r)




Correct Non-Stationary Arrival Techniques — Inversion Method

Motivating Geometry
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spaced points on the y-axis of ‘E‘ 8
A(r), and solve =
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a; = A" (yi) Lé 4
we see the distribution of a; 3
will reflect the arrival rates = 27
required by A(t). < o/

ay az as as



Correct Non-Stationary Arrival Techniques — Inversion Method

Motivating Geometry

10
- A1)
If we take n = 10 evenly o A1)
spaced points on the y-axis of ‘E‘ 8
A(r), and solve =
o O
B E
ai=A" () Lé 4
we see the distribution of a; 3
will reflect the arrival rates = 27
required by A(t). < o/

ay az as as

But this won’t work for random arrival processes,
because there is nothing random in the technique (so far...).



Correct Non-Stationary Arrival Techniques — Inversion Method

Algorithm for n Randomized Arrivals

agp <0 5 10 A1)
yo+ 0 %‘ gl M)
i+ 0 g
repeat n times ( § 6t

Yi+1 < Yi+ Exponential(1.0) E .l

a1 = A7 (vig1) E

i—it1 |
) <
ai,a,...,a, are arrival times 0 ‘

ap a as as



Non-Stationary Arrival Processes in NES

Unlike the thinning method, the A~! () method is not a form of accept-reject. So let’s put it
back into a form more suitable for the computational model. . .

Convert the inversion algorithm for non-stationary arrival times to a single equation for the next
arrival time when you are given g; the simulation time of the current event.

ap <0

Yo< 0

i<0

repeat n times (
Yit1 < yi + Exponential (1.0)
air1 A (vig1)
i—i+1

)

ay,az,...,a, are arrival times



Non-Stationary Arrival Processes in NES

Unlike the thinning method, the A~! () method is not a form of accept-reject. So let’s put it
back into a form more suitable for the computational model. . .

Convert the inversion algorithm for non-stationary arrival times to a single equation for the next
arrival time when you are given g; the simulation time of the current event.

ap <0
Y 3—<_00 “Next Arrival” equation for NES
i
repeat n times (
Yit1 < yi + Exponential (1.0)
air1 A (vig1)
i+—i+1

aiy1 +— A"V (A(a;) + Exponential (1.0))

)

ay,az,...,a, are arrival times



Special Case Derivation

Derive A(t), A=!(y), and simplify the NES equation

air1 = A" (A(a;) + Exponential (1.0))

when A(¢) = o (a constant).



Special Case Derivation

Derive A(t), A~ !(y), and simplify the NES equation

air1 = A" (A(a;) + Exponential (1.0))

when A(¢) = o (a constant).

| Findy = A(1):
A(t):/o A(s) ds:/o o ds = ar

2 Findt = A~!(y):



Special Case Derivation

2 Findt = A~!(y):
3 Plug in and simplify

aiy1 = A '(A(a;) + Exponential(1.0))

1
(use defn) = 3 (A(a;) + Exponential (1.0))
1 1
fi = — i+ ——1log (1 —
(use defns) o (oca,—i- o og ( u))
1
(distribute) = a;+ " log (1 —u

)
|
(use defn) = q —i—Exponentzal(a

)



Two Common Non-Stationary Patterns using Piecewise A(7)s

The Coffee Shop

(t) 0600 <t < 0900
(t) 0900 <1< 1100
Aii(r) 1100 <1 < 1300
(t) 1300<t < 1900

What to do with arrival rate transitions with
“Mr) =0 gaps” (eg 1900 — 0600)?
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Two Common Non-Stationary Patterns using Piecewise A(7)s

The Coffee Shop
hos(2) 0600 <1 < 0900
A(r) = Aoo(r) 0900 < 7 < 1100 24hr Emergency Room
Aii(r) 1100 <1 < 1300 )
Aia(r) 1300 < 1 < 1900 Aoo(7) 0000 <t < 0300
Ao3(t) 0300 <t <0500
What to do with arrival rate transitions with Aos(2) 0500 <t < 0900
“Mr) =0 gaps” (eg 1900 — 0600)? Aoo
A1(r) 1100 <t < 1500

1500 <t < 1900
Aro(t) 1900 <t < 2200
ii. Adda A23(t) 2300 <t < 0000

i. Restart the arrival process algorithm at 6AM, or

)
|
1) 0900 <t < 1100
)
)
)
)

M1o(t) =0 for 1900 <t < 0600

and treat as a “full cycle” arrival process. ..



Two Common Non-Stationary Patterns using Piecewise A(7)s

The Coffee Shop
hos(2) 0600 <1 < 0900
A(r) = Aoo(r) 0900 < 7 < 1100 24hr Emergency Room
Aii(r) 1100 <1 < 1300 )
Aia(r) 1300 < 1 < 1900 Aoo(7) 0000 <t < 0300
Ao3(t) 0300 <t <0500
What to do with arrival rate transitions with Aos(2) 0500 <t < 0900
“Mr) =0 gaps” (eg 1900 — 0600)? Aoo
A1(r) 1100 <t < 1500

1500 <t < 1900
Aro(t) 1900 <t < 2200
ii. Adda A23(t) 2300 <t < 0000

i. Restart the arrival process algorithm at 6AM, or

)
|
1) 0900 <t < 1100
)
)
)
)

A1g(t) =0 for 1900 <7 < 0600
and treat as a “full cycle” arrival process. ..

What to do with Ag9 — A;; transitions without intervening “gaps”?



What to do with piecewise arrival rates without ‘““‘gaps’?

Inversion method: Carry the residual portion of Exponential(1.0) over from A; to A1

A
Exponential(1.0) ( Residual carried over to A,
D S
! 3 Aiyi
a; 28]
Tiea T; T
arrivals from A;(r) arrivals from A;4(f)

aip = Ai:_ll (Ai(a;) + Exponential (1.0) — A;(T;))



What to do with piecewise arrival rates without ‘““‘gaps’?

Thinning method: use a ”global” Ayax:

Amax = mkax{mtax Ai(f)}

1

(Less wasteful thinning methods exist, but are more complicated to explain.)

Also, beware of thinning when Az is large and there are regions of A(¢) = O0...



