
Stationary Arrival Processes

◮ Generated using Exponential(µ) interarrival times

◮ µ = 1
λ

where λ = n
t
, average arrivals per time unit

◮ Also called a homogeneous arrival process

◮ The next arrival equation is

ai+1 = ai +Exponential

(
1

λ

)

Generate n Arrival Times
we don’t really do this in a simulation!

a0← 0

i← 0

repeat n times (

ai+1← ai+Exponential( 1
λ
)

i← i+1

)

return a1,a2, . . . ,an



Stationary Arrival Processes

◮ Generated using Exponential(µ) interarrival times

◮ µ = 1
λ

where λ = n
t
, average arrivals per time unit

◮ Also called a homogeneous arrival process

◮ The next arrival equation is

ai+1 = ai +Exponential

(
1

λ

)

Generate n Arrival Times
we don’t really do this in a simulation!

a0← 0

i← 0

repeat n times (

ai+1← ai+Exponential( 1
λ
)

i← i+1

)

return a1,a2, . . . ,an

A convenient fiction, arrival processes are often time dependent: λ(t).
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Non-Stationary Arrival Processes

Let the average arrival rate vary with t, you are given λ(t).

Convert this stationary arrival equation to a non-stationary one:
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(where t is the simulation clock)

But does this technique actually work?



Compare Cumulative Arrivals between two techniques
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Clearly, there is evidence it doesn’t work. . . You’ll develop your own evidence in a future (next?)

LGA.
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Clearly, there is evidence it doesn’t work. . . You’ll develop your own evidence in a future (next?)

LGA.

Take 60s and discuss in your group — about how many simulations were required to generate the

cumulative arrival plot on the right? All the information is on this screen. . .



Compare Cumulative Arrivals between two techniques
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The left hand plot shows a rate vs time relationship — so the expected number of arrivals per

simulation is the area under the curve. About 1
2
(13×10)≈ 65 (or you could start dissecting the

areas of rectangles, triangles, and a trapezoid. . . ).

There are 5000 arrivals shown in the right hand plot, so about
(

5000
65

)≈ 100 simulations.



Correct Non-Stationary Arrival Techniques — Thinning Method

a0← 0

i← 0

repeat n times (

s← ai

repeat (

s← s+Exponential
(

1
λmax

)
v←Uni f orm(0,λmax)

) until ( v < λ(s) )

ai+1← s

i← i+1

)

a1,a2, . . . ,an are arrival times
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Let’s talk: lga-crv-applications . . .



Correct Non-Stationary Arrival Techniques — Inversion Method

Introducing the Cumulative Arrival Function Λ(t)

Λ(t) =
∫ t

0
λ(s) ds

Λ(t)
λ(t)



Correct Non-Stationary Arrival Techniques — Inversion Method

Motivating Geometry

If we take n = 10 evenly

spaced points on the y-axis of

Λ(t), and solve

ai = Λ
−1(yi)

we see the distribution of ai

will reflect the arrival rates

required by λ(t).
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But this won’t work for random arrival processes,

because there is nothing random in the technique (so far. . . ).



Correct Non-Stationary Arrival Techniques — Inversion Method

Algorithm for n Randomized Arrivals
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Non-Stationary Arrival Processes in NES

Unlike the thinning method, the Λ−1(t) method is not a form of accept-reject. So let’s put it

back into a form more suitable for the computational model. . .

Convert the inversion algorithm for non-stationary arrival times to a single equation for the next

arrival time when you are given ai the simulation time of the current event.

a0← 0

y0← 0

i← 0

repeat n times (

yi+1← yi +Exponential(1.0)
ai+1← Λ−1(yi+1)
i← i+1

)

a1,a2, . . . ,an are arrival times
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“Next Arrival” equation for NES

ai+1← Λ−1(Λ(ai)+Exponential(1.0))



Special Case Derivation

Derive Λ(t), Λ−1(y), and simplify the NES equation

ai+1 = Λ
−1 (Λ(ai)+Exponential(1.0))

when λ(t) = α (a constant).



Special Case Derivation

Derive Λ(t), Λ−1(y), and simplify the NES equation

ai+1 = Λ
−1 (Λ(ai)+Exponential(1.0))

when λ(t) = α (a constant).

1 Find y = Λ(t):

Λ(t) =
∫ t

0
λ(s) ds =

∫ t

0
α ds = αt

2 Find t = Λ−1(y):

y = αt ⇒ t =
y

α



Special Case Derivation

2 Find t = Λ−1(y):

y = αt ⇒ t =
y

α

3 Plug in and simplify

ai+1 = Λ
−1 (Λ(ai)+Exponential(1.0))

(use defn) =
1

α
(Λ(ai)+Exponential(1.0))

(use defns) =
1

α

(
αai +− 1

1.0
log (1−u)

)
(distribute) = ai +− 1

α
log (1−u)

(use defn) = ai +Exponential(
1

α
)



Two Common Non-Stationary Patterns using Piecewise λ(t)s

The Coffee Shop

λ(t) =


λ06(t) 0600≤ t < 0900

λ09(t) 0900≤ t < 1100

λ11(t) 1100≤ t < 1300

λ13(t) 1300≤ t < 1900

What to do with arrival rate transitions with

“λ(t) = 0 gaps” (eg 1900→ 0600)?
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ii. Add a

λ19(t) = 0 for 1900≤ t < 0600

and treat as a “full cycle” arrival process. . .

24hr Emergency Room

λ(t) =
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λ11(t) 1100≤ t < 1500

λ15(t) 1500≤ t < 1900

λ19(t) 1900≤ t < 2200

λ23(t) 2300≤ t < 0000
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λ00(t) 0000≤ t < 0300

λ03(t) 0300≤ t < 0500

λ05(t) 0500≤ t < 0900

λ09(t) 0900≤ t < 1100

λ11(t) 1100≤ t < 1500

λ15(t) 1500≤ t < 1900
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λ23(t) 2300≤ t < 0000

What to do with λ09 → λ11 transitions without intervening “gaps”?



What to do with piecewise arrival rates without “gaps”?

Inversion method: Carry the residual portion of Exponential(1.0) over from Λi to Λi+1

Ti
Ti−1

yi

Λi

Λi+1

arrivals from λi(t) arrivals from λi+1(t)
Ti+1

Exponential(1.0)

. . .. . .

Residual carried over to Λi+1

ai ai+1

ai+1 = Λ
−1
i+1 (Λi(ai)+Exponential(1.0)−Λi(Ti))



What to do with piecewise arrival rates without “gaps”?

Thinning method: use a ”global” λmax:

λmax = max
λi

{max
t

λi(t)}

(Less wasteful thinning methods exist, but are more complicated to explain.)

Also, beware of thinning when λmax is large and there are regions of λ(t) = 0. . .


