Stationary Arrival Processes

- Generated using $Exponential(\mu)$ interarrival times
- $\mu = \frac{1}{\lambda}$ where $\lambda = \frac{n}{t}$, average arrivals per time unit
- ▶ Also called a homogeneous arrival process
- ► The next arrival equation is

$$a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda}\right)$$

Generate *n* Arrival Times we don't really do this in a simulation!

```
a_0 \leftarrow 0

i \leftarrow 0

repeat n times (

a_{i+1} \leftarrow a_i + Exponential(\frac{1}{\lambda})

i \leftarrow i+1

)

return a_1, a_2, \dots, a_n
```

Stationary Arrival Processes

- Generated using $Exponential(\mu)$ interarrival times
- $\mu = \frac{1}{\lambda}$ where $\lambda = \frac{n}{t}$, average arrivals per time unit
- ► Also called a homogeneous arrival process
- ► The next arrival equation is

$$a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda}\right)$$

Generate *n* Arrival Times we don't really do this in a simulation!

```
a_0 \leftarrow 0 i \leftarrow 0 repeat n times ( a_{i+1} \leftarrow a_i + Exponential(\frac{1}{\lambda}) i \leftarrow i+1 ) return a_1, a_2, \dots, a_n
```

A convenient fiction, arrival processes are often **time** dependent: $\lambda(t)$.

Non-Stationary Arrival Processes

Let the average arrival rate vary with t, you are given $\lambda(t)$.

Convert this stationary arrival equation to a non-stationary one:

$$a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda}\right)$$

Non-Stationary Arrival Processes

Let the average arrival rate vary with t, you are given $\lambda(t)$.

Convert this stationary arrival equation to a non-stationary one:

$$a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda}\right)$$
 $a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda(t)}\right)$

(where t is the **simulation clock**)

Non-Stationary Arrival Processes

Let the average arrival rate vary with t, you are given $\lambda(t)$.

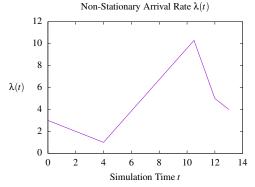
Convert this stationary arrival equation to a non-stationary one:

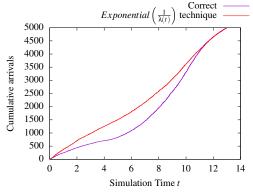
$$a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda}\right)$$
 $a_{i+1} = a_i + Exponential\left(\frac{1}{\lambda(t)}\right)$

(where t is the **simulation clock**)

But does this technique actually work?

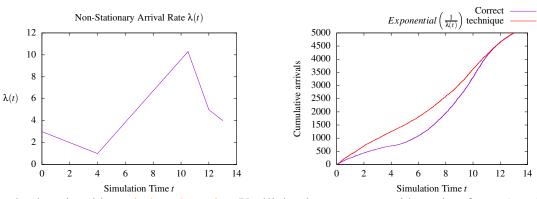
Compare Cumulative Arrivals between two techniques





Clearly, there is evidence it doesn't work... You'll develop your own evidence in a future (next?) LGA.

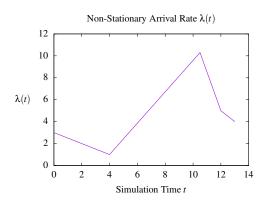
Compare Cumulative Arrivals between two techniques

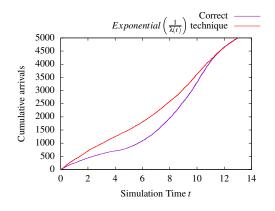


Clearly, there is evidence it doesn't work... You'll develop your own evidence in a future (next?) LGA.

Take 60s and discuss in your group — about how many simulations were required to generate the cumulative arrival plot on the right? All the information is on this screen...

Compare Cumulative Arrivals between two techniques





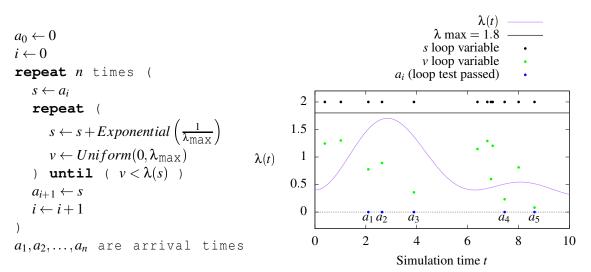
The left hand plot shows a **rate vs time relationship** — so the expected number of arrivals per simulation is the area under the curve. About $\frac{1}{2}(13 \times 10) \approx 65$ (or you could start dissecting the areas of rectangles, triangles, and a trapezoid...).

There are 5000 arrivals shown in the right hand plot, so about $\left(\frac{5000}{65}\right) \approx 100$ simulations.

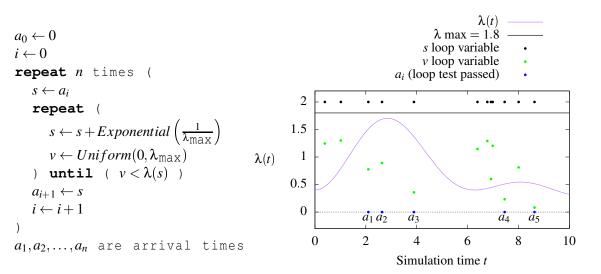
```
\lambda \max = 1.8 –
a_0 \leftarrow 0
                                                                                                     s loop variable
i \leftarrow 0
                                                                                                     v loop variable
repeat n times
                                                                                              a_i (loop test passed)
    s \leftarrow a_i
    repeat (
        s \leftarrow s + Exponential\left(\frac{1}{\lambda_{\text{max}}}\right)
                                                                    1.5
        v \leftarrow Uniform(0, \lambda_{\text{max}})
                                                           \lambda(t)
    ) until ( v < \lambda(s) )
                                                                    0.5
    a_{i+1} \leftarrow s
    i \leftarrow i + 1
                                                                                      a_1 a_2
                                                                                                                            8
                                                                                                                                        10
                                                                                                               6
a_1, a_2, \ldots, a_n are arrival times
                                                                                              Simulation time t
```

```
\lambda \max = 1.8 -
a_0 \leftarrow 0
                                                                                                    s loop variable
i \leftarrow 0
                                                                                                    v loop variable
repeat n times
                                                                                             a_i (loop test passed)
    s \leftarrow a_i
    repeat (
        s \leftarrow s + Exponential\left(\frac{1}{\lambda_{\text{max}}}\right)
                                                                    1.5
        v \leftarrow Uniform(0, \lambda_{\text{max}})
                                                           \lambda(t)
    ) until ( v < \lambda(s) )
                                                                   0.5
    a_{i+1} \leftarrow s
    i \leftarrow i + 1
                                                                                     a_1 a_2
                                                                                                                           8
                                                                                                              6
                                                                                                                                       10
a_1,a_2,\ldots,a_n are arrival times
                                                                                              Simulation time t
```

What is the optimal choice for λ_{max} ?



What is the optimal choice for λ_{\max} ? $\max_t \lambda(t)$ How many times did the innermost loop instructions run for a_5 ?



What is the optimal choice for λ_{max} ? $\max_{t} \lambda(t)$ How many times did the innermost loop instructions run for a_5 ? 2

Introducing the **Cumulative Arrival Function** $\Lambda(t)$

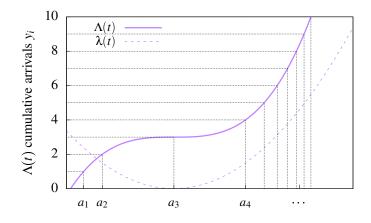
$$\Lambda(t) = \int_0^t \lambda(s) \, \mathrm{d}s$$

Motivating Geometry

If we take n = 10 evenly spaced points on the *y*-axis of $\Lambda(t)$, and solve

$$a_i = \Lambda^{-1}(y_i)$$

we see the distribution of a_i will reflect the arrival rates required by $\lambda(t)$.

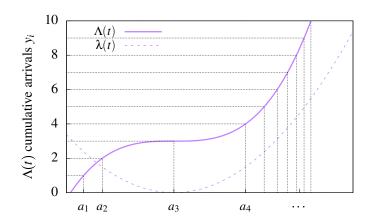


Motivating Geometry

If we take n = 10 evenly spaced points on the *y*-axis of $\Lambda(t)$, and solve

$$a_i = \Lambda^{-1}(y_i)$$

we see the distribution of a_i will reflect the arrival rates required by $\lambda(t)$.

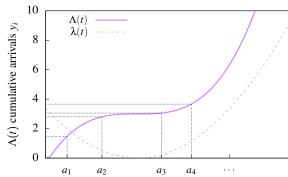


But this won't work for random arrival processes, because there is **nothing random** in the technique (so far...).

Algorithm for *n* Randomized Arrivals

```
a_0 \leftarrow 0
y_0 \leftarrow 0
i \leftarrow 0

repeat n times (
y_{i+1} \leftarrow y_i + Exponential(1.0)
a_{i+1} \leftarrow \Lambda^{-1}(y_{i+1})
i \leftarrow i+1
)
a_1, a_2, \dots, a_n are arrival times
```



Non-Stationary Arrival Processes in NES

Unlike **the thinning method**, the $\Lambda^{-1}(t)$ method is not a form of **accept-reject**. So let's put it back into a form more suitable for the computational model...

Convert the inversion algorithm for non-stationary arrival times to a *single equation* for the **next** arrival time when you are given a_i the simulation time of the **current** event.

```
a_0 \leftarrow 0
y_0 \leftarrow 0
i \leftarrow 0

repeat n times (
y_{i+1} \leftarrow y_i + Exponential(1.0)
a_{i+1} \leftarrow \Lambda^{-1}(y_{i+1})
i \leftarrow i+1
)
a_1, a_2, \dots, a_n are arrival times
```

Non-Stationary Arrival Processes in NES

Unlike **the thinning method**, the $\Lambda^{-1}(t)$ method is not a form of **accept-reject**. So let's put it back into a form more suitable for the computational model...

Convert the inversion algorithm for non-stationary arrival times to a *single equation* for the **next arrival time** when you are given a_i the simulation time of the **current** event.

```
a_0 \leftarrow 0 y_0 \leftarrow 0 i \leftarrow 0 repeat n times ( y_{i+1} \leftarrow y_i + Exponential(1.0) a_{i+1} \leftarrow \Lambda^{-1}(y_{i+1}) i \leftarrow i+1 ) a_1, a_2, \ldots, a_n are arrival times
```

"Next Arrival" equation for NES

$$a_{i+1} \leftarrow \Lambda^{-1}(\Lambda(a_i) + Exponential(1.0))$$

Special Case Derivation

Derive $\Lambda(t)$, $\Lambda^{-1}(y)$, and simplify the NES equation

$$a_{i+1} = \Lambda^{-1} \left(\Lambda(a_i) + Exponential(1.0) \right)$$

when $\lambda(t) = \alpha$ (a constant).

Special Case Derivation

Derive $\Lambda(t)$, $\Lambda^{-1}(y)$, and simplify the NES equation

$$a_{i+1} = \Lambda^{-1} \left(\Lambda(a_i) + Exponential(1.0) \right)$$

when $\lambda(t) = \alpha$ (a constant).

1 Find $y = \Lambda(t)$:

$$\Lambda(t) = \int_0^t \lambda(s) \, ds = \int_0^t \alpha \, ds = \alpha t$$

2 Find $t = \Lambda^{-1}(y)$:

$$y = \alpha t \quad \Rightarrow \quad t = \frac{y}{\alpha}$$

Special Case Derivation

2 Find $t = \Lambda^{-1}(y)$:

$$y = \alpha t \quad \Rightarrow \quad t = \frac{y}{\alpha}$$

3 Plug in and simplify

$$a_{i+1} = \Lambda^{-1} (\Lambda(a_i) + Exponential(1.0))$$

$$(use defn) = \frac{1}{\alpha} (\Lambda(a_i) + Exponential(1.0))$$

$$(use defns) = \frac{1}{\alpha} \left(\alpha a_i + -\frac{1}{1.0} \log(1 - u) \right)$$

$$(distribute) = a_i + -\frac{1}{\alpha} \log(1 - u)$$

$$(use defn) = a_i + Exponential(\frac{1}{\alpha})$$

The Coffee Shop

$$\lambda(t) = \begin{cases} \lambda_{06}(t) & 0600 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1300 \\ \lambda_{13}(t) & 1300 \le t < 1900 \end{cases}$$

What to do with arrival rate transitions with " $\lambda(t) = 0$ gaps" (eg 1900 \rightarrow 0600)?

The Coffee Shop

$$\lambda(t) = \begin{cases} \lambda_{06}(t) & 0600 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1300 \\ \lambda_{13}(t) & 1300 \le t < 1900 \end{cases}$$

What to do with arrival rate transitions with " $\lambda(t) = 0$ gaps" (eg 1900 \rightarrow 0600)?

i. Restart the arrival process algorithm at 6AM, or

The Coffee Shop

$$\lambda(t) = \begin{cases} \lambda_{06}(t) & 0600 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1300 \\ \lambda_{13}(t) & 1300 \le t < 1900 \end{cases}$$

What to do with arrival rate transitions with " $\lambda(t) = 0$ gaps" (eg 1900 \rightarrow 0600)?

- i. Restart the arrival process algorithm at 6AM, or
- ii. Add a

$$\lambda_{19}(t) = 0$$
 for $1900 \le t < 0600$

and treat as a "full cycle" arrival process...

24hr Emergency Room

$$\lambda(t) = \begin{cases} \lambda_{00}(t) & 0000 \le t < 0300 \\ \lambda_{03}(t) & 0300 \le t < 0500 \\ \lambda_{05}(t) & 0500 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1500 \\ \lambda_{15}(t) & 1500 \le t < 1900 \\ \lambda_{19}(t) & 1900 \le t < 2200 \\ \lambda_{23}(t) & 2300 \le t < 0000 \end{cases}$$

The Coffee Shop

$$\lambda(t) = \begin{cases} \lambda_{06}(t) & 0600 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1300 \\ \lambda_{13}(t) & 1300 \le t < 1900 \end{cases}$$

What to do with arrival rate transitions with " $\lambda(t) = 0$ gaps" (eg 1900 \rightarrow 0600)?

- i. Restart the arrival process algorithm at 6AM, or
- ii. Add a

$$\lambda_{19}(t) = 0$$
 for $1900 \le t < 0600$

and treat as a "full cycle" arrival process...

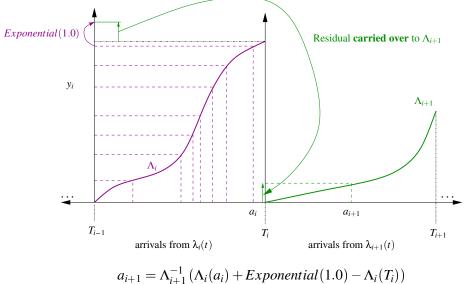
24hr Emergency Room

$$\lambda(t) = \begin{cases} \lambda_{00}(t) & 0000 \le t < 0300 \\ \lambda_{03}(t) & 0300 \le t < 0500 \\ \lambda_{05}(t) & 0500 \le t < 0900 \\ \lambda_{09}(t) & 0900 \le t < 1100 \\ \lambda_{11}(t) & 1100 \le t < 1500 \\ \lambda_{15}(t) & 1500 \le t < 1900 \\ \lambda_{19}(t) & 1900 \le t < 2200 \\ \lambda_{23}(t) & 2300 \le t < 0000 \end{cases}$$

What to do with $\lambda_{09} \rightarrow \lambda_{11}$ transitions **without** intervening "gaps"?

What to do with piecewise arrival rates without "gaps"?

Inversion method: Carry the residual portion of Exponential (1.0) over from Λ_i to Λ_{i+1}



$$a_{i+1} = \Lambda_{i+1}^{-1} \left(\Lambda_i(a_i) + Exponential(1.0) - \Lambda_i(T_i) \right)$$

What to do with piecewise arrival rates without "gaps"?

Thinning method: use a "global" λ_{max} :

$$\lambda_{\max} = \max_{\lambda_i} \{ \max_t \lambda_i(t) \}$$

(Less wasteful thinning methods exist, but are more complicated to explain.)

Also, **beware of thinning** when λ_{max} is large and there are regions of $\lambda(t) = 0...$