
CSCI 423 Learning Group Assignment 14 Discrete Random Variates

All students should review §6.1–6.1.1, read §6.2–6.2.1 and §6.3.2, and scan through §6.5 paying particular attention

to algorithms 6.5.1, 6.5.4–6.5.6 before answering their assigned questions in this assignment. Keep in mind: although

the text does not use the term, algorithm 6.5.6 is colliquilly known as “reservior sampling”. It is an important

algorithm in data science and simulation, and I’ll refer to 6.5.6 as simply reservior sampling in lecture, assessments

(quizzes and exams) and other written material such as learning goals.

The following numbered questions should be split across your group and the solutions discussed during the next lecture

period. Students should review the learning goals for the day, determine which are applicable to their questions and

provide answers or commentary to their group members.

When using the Internet to formulate answers (some questions may require this), keep track of where you find your

information on the web. You may be asked for, and are expected to have (in Email-able form), URLs supporting your

investigations.

1. (For aficionados of math!)

(a) Question 6.2.3 (§6.2.4). Be prepared to explain to your group how you determined the supporting set (aka

the domain) of this discrete probability distribution.

(b) Question 6.2.5 (§6.2.4); Hint: attack (b) like f (x) was a continuous random variable, then use floor (⌊·⌋) or

ceiling (⌈·⌉) to convert the result to integers. Show numerically or graphically that your solution works for

n = 5 and u of 1
10

, 2
5
, and 5

6
.

2. (a) Suppose X is a discrete random variable with possible values {a,a+ 1, . . . ,b} (a, b finite). In your favorite

language, design and implement a binary search algorithm for F∗(u) for all u ∈ (0,1).

(b) Write a wrapper utility that reads a cdf data file with an xi and F(xi) on each line:

a F(a)

a+1 F(a+1)

a+2 F(a+2)

:

b 1

Using binomial-100-3.cdf , demonstrate that your code works by generating 1000 values and generating

two plots:

i. A discrete data histogram (which should look like Figure 6.3.2 of the text),

ii. A CDF of the values, plotted alongside the data of binomial-100-3.cdf .

Notice that by design, the contents of binomial-100-3.cdf defines a discrete CDF.

https://cs.mcprogramming.com/djsim/dlg/schedule#today
https://cs.mcprogramming.com/static/sim/hr/0324f91efcdea6c4/binomial-100-3.cdf
https://cs.mcprogramming.com/static/sim/hr/0324f91efcdea6c4/binomial-100-3.cdf
https://cs.mcprogramming.com/static/sim/hr/0324f91efcdea6c4/binomial-100-3.cdf
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3. §6.3.2 of the text describes the technique of constrained inversion for truncated random variates; complete the

following questions and tasks with your insights from the reading.

(a) Why are truncated probability distributions needed in computer simulations?

(b) Given the discrete probability distribution at the left, work through the details of using

constrained inversion to create a random variate for the distribution over the supporting

set X t = {5,6, . . . ,12}.

(c) Draw (by hand or computer, but make them good!) several graphs showing the geometric

interpretation of the algorithmic steps in your answer to part b.

(d) Be prepared to review and explain your work when your learning group reconvenes next

lecture.

xi f (xi)
3 0.05

4 0.11

5 0.15

6 0.16

7 0.13

8 0.10

9 0.09

10 0.09

11 0.05

12 0.02

13 0.02

14 0.00

15 0.02

16 0.00

17 0.00

18 0.00

19 0.01

4. Suppose you have T items and would like an unbiased random sample of size T −1. An easy way to do this is to

simply throw one element out in an unbiased manner (choose the loser with Equilikely(1,T )).

Consider another way to achieve a similar result:

1. Collect the first T −1 items and put them aside (call them A); call the remaining T th item Z.

2. Flip a T−1
T

bias coin (biased towards success, “heads”).

3. If the flip is tails, then the random sample is simply A set aside in step 1, and you are done..

4. If the flip is heads, then choose an item from A in an unbiased manner (Equilikely(1,T − 1) springs to

mind), and swap Z with this item. Now Z is in A , and the size of A is still T − 1. Call A the sought after

random sample, and you are done.

Using basic laws of probability (not theorems or algorithms from the book), show that the probability of having

any particular sample is the same between the first and second methods; and in fact all possible samples have the

same probability of occurring regardless of the method used. Hint: Equivalently, and arguably easier, you can

show that each item 1 through T has the same probability of not being chosen for the sample, regardless of

method used.
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