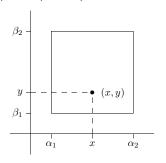
Random Points

September 25, 2025

Geometric Applications

• Generate a point at random inside a rectangle with opposite corners at (α_1, β_1) and (α_2, β_2)

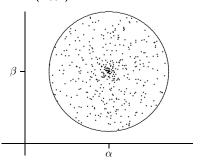


```
x = \text{Uniform}(\alpha_1, \alpha_2);

y = \text{Uniform}(\beta_1, \beta_2);
```

Example 2.3.8

• Generate a point (x, y) at random *interior* to the circle of radius ρ centered at (α, β)



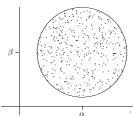
```
\theta = \text{Uniform}(-\pi, \pi);
r = \text{Uniform}(0, \rho);
x = \alpha + r * \cos(\theta);
y = \beta + r * \sin(\theta);
INCORRECT!
```

Acceptance/Rejection

 Generate a point at random within a circumscribed square and then either accept or reject the point

Generating a Random Point

```
do {
x = Uniform(-\rho, \rho);
y = Uniform(-\rho, \rho);
} while (x * x + y * y >= \rho * \rho);
x = \alpha + x;
y = \beta + y;
return (x, y);
```



Alternatives to Accept/Reject (Deriving a Radial Distribution...)

Not always possible, and not always the most straight-forward, sometimes a little math gets you out of the Accept/Reject pit.

Circumference
$$|_{x} = 2\pi x$$
 Circumference $|_{2x} = 4\pi x$

We want f(x), the distribution of points along the circumference of radius 2x to be twice as much as at x. For some C > 0 we expect f(x) = Cx, what is C?

$$1 \equiv \int_0^R f(x) \, dx = \int_0^R Cx \, dx = C \left[\frac{1}{2} x^2 \right]_0^R = C \frac{R^2}{2}$$

solving

$$\frac{CR^2}{2} = 1 \quad \Rightarrow \quad C = \frac{2}{R^2} \quad \Rightarrow \quad f(x) = \frac{2x}{R^2}$$

We have a pdf f(x) for the distribution of points on the circumscribed annular rings...now what?

Deriving a Radial Distribution (continued)

Step 1: Integrate f(x) to get the **cumulative distribution function**:

$$F(x) = \int_0^x f(t) dt = \int_0^x \frac{2t}{R^2} dt = \frac{2}{R^2} \left[\frac{t^2}{2} \right]_0^x = \frac{x^2}{R^2}$$

Step 2: Clearly 0 < F(x) < 1, let $u \leftarrow Random()$ and set them equal to each other, solve for x which is back in the **domain** of F(x) and f(x)...

$$u = \frac{x^2}{R^2}$$
 \Rightarrow $x^2 = uR^2$ \Rightarrow $x = R\sqrt{u} = F^{-1}(u)$

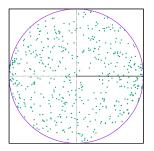
From the geometry 0 < x < R so we don't need $|\cdot|$ sign pedantics.

Now we can randomize points in a circle with two draws from Random():

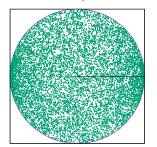
$$\theta = \text{Uniform}(0, 2\pi)$$
 $r = R\sqrt{(\text{Random}())}$ $x = r\cos\theta$ $y = r\sin\theta$

Stochastic or Suspect?

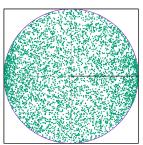
n = 500 random points in a circle



n = 10000 random points in a circle



n = 5000 random points in a circle



What do you think of these "random points" in a circle?

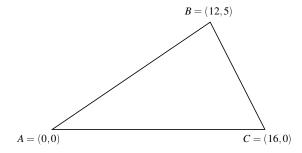
Can you speculate what the (flawed) algorithm is that generated these points?

Alternatives to Accept/Reject

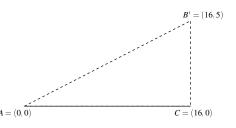
Suppose you had a triangle at coordinates

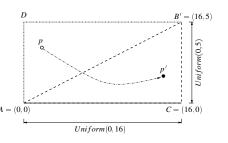
$$A(0,0)$$
 $B(12,5)$ $C(16,0)$

how would you **uniformly** randomize a point inside the triangle with at most two draws from your pRNG?



Strategy A: Shearing to a known solution





Strategy A:

- \triangleright Shear point B from (12,5) to B'(16,5)
- ▶ Choose random point in the A, (0,5), B', C rectangle
- If the point is above $\overline{AB'}$, reflect it (carefully!) to the other side
- Unshear

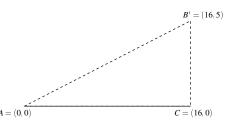
A shearing matrix that keeps y coords the same:

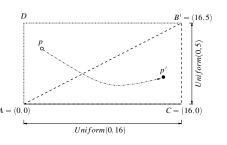
$$\left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} x + sy \\ y \end{array}\right]$$

Calculate s:

$$\begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ 5 \end{bmatrix} = \begin{bmatrix} 16 \\ 5 \end{bmatrix} \Rightarrow 12 + 5s = 16 \Rightarrow s = -\frac{4}{5}$$

Strategy A: Shearing to a known solution





Strategy A:

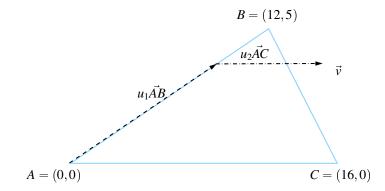
- **▶** We must be careful with reflecting!
- If we simply "flip" the points vertically over the hypotnuse $\overline{AB'}$, we will end up with just as many points near the little tip of the triangle as near the altitude that can't be right.
- We must flip the point to its congruent location in $\triangle AB'C$.
- Figure 3 Given a randomized point p = (i, j) and $j > \frac{5}{16}i$ we want the translated location to p'(i', j') = (16 i, 5 j).

Strategy B: Vector Addition

▶ Choose points with vector math $(u_1 \text{ and } u_2 \text{ from } Random())$

$$\vec{v} = u_1 \vec{AB} + u_2 \vec{AC}$$

▶ If \vec{v} lies beyond \overline{BC} , carefully reflect it back into $\triangle ABC$.



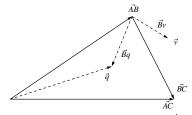
Strategy B: Vector Addition (cross product approach)

Choose points with vector math $(u_1 \text{ and } u_2 \text{ from } Random())$

$$\vec{v} = u_1 \vec{AB} + u_2 \vec{AC}$$

If \vec{v} lies beyond \overline{BC} , carefully reflect it back into $\triangle ABC$.

$$\vec{v}' = \vec{AB} + \vec{AC} - \vec{v}$$



How to tell if the point is beyond \overline{BC} ? Remember the right hand rule of cross products! Let $\vec{q} = \frac{1}{4}(\vec{AB} + \vec{AC})$, then look to see if the sign of the

$$\vec{BC} \times \vec{Bq}$$
 and $\vec{BC} \times \vec{Bv}$

cross products $\vec{BC} \times \vec{Bq}$ and $\vec{BC} \times \vec{Bv}$ $\Rightarrow \vec{BC} \times \vec{Bc} \text{ match. If they do, then } \vec{v} \text{ lies in the triangle, otherwise reflect it back.}$

Recall, for
$$\vec{a} = (a_1, a_2)$$
 and $\vec{b} = (b_1, b_2)$,

$$\vec{a} \times \vec{b} = (a_1b_2 - a_2b_1)\vec{k}$$

where \vec{k} is the unit vector perpendicular to the plane spanned by \vec{a} and \vec{b} .

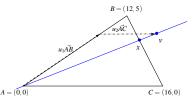
Strategy B: Vector Addition (line intersection approach)

ightharpoonup Choose points with vector math (u_1 and u_2 from Random())

$$\vec{v} = u_1 \vec{AB} + u_2 \vec{AC}$$

▶ If \vec{v} lies beyond \overline{BC} , **carefully** reflect it back into $\triangle ABC$.

$$\vec{v}' = \vec{AB} + \vec{AC} - \vec{v}$$



How to tell if the point is beyond \overline{BC} ?

Find x the intersection of the line containing A and v with the line BC.

Compare the distance from A to v and from A to x.