Event Calendars (Lists) \mathcal{E}

October 30, 2025

Section 5.3: Event List Management

- Large NES may have thousands of events in the event list
- Such a NES will spend most of CPU time on managing event list
- Efficient event management will reduce overall CPU time
- Structures also applicable to SJF queue discipline

Introduction

- Event list: data structure of events, plus any extra associated info
- Elements in the list: event notices
- List size classifications:
 - Fixed maximum. No need for dynamic memory allocation.
 - Variable or unknown maximum.
- Application:
 - A specific model. We can exploit model characteristics.
 - General-purpose (e.g., simulation language). Need robust DS

Event list operations

- Critical operations:
 - Insert / enqueue
 - "Schedule" an event
 - Delete / dequeue
 - Usually: process the next event
 - Rarely: cancel an already-scheduled event
- Other operations (not considered here):
 - Change operation
 - Search to change an attribute (e.g., scheduled time)
 - Examine operation
 - Search to read an attribute
 - Count operation
 - How many event notices in list?

Event list criteria

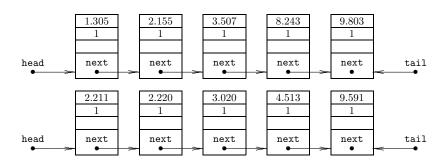
- Speed
 - Balance between sophisticated DS and overhead
 - Consider average-case and worst-case performance
- Robustness
 - Performs well for many scheduling scenarios
 - General purpose: performs well for many simulation models
 - Use diverse, representative benchmark models
- Adaptability
 - Adapt to changes in event distributions
 - Adapt to changes in event list size
 - Parameter-free

Advanced event list management

- Further discussion is for general case:
 - Number of events in list varies
 - Maximum size of event list is unknown
 - Structure of simulation model is unknown
- We will discuss four structures:
 - Multiple linked lists
 - Binary search trees
 - Heaps
 - 4 Hybrid schemes
- Other structures exist

Multiple Linked Lists

- Use k ordered lists
- Insert into shortest list: worst case $\mathcal{O}(n/k)$
- Delete is $\mathcal{O}(k)$: check front of each list
- Example for k = 2, n = 10 for ttr:



Issues for Multiple Linked Lists

- Should k be fixed, or allowed to vary?
- If fixed, what is a good *k*?
- If variable, decide
 - When to increase or decrease k (as a function of n)
 - How to increase *k*: split lists or start new?
 - How to decrease k: merge lists?

Binary trees

Recall:

- Each node has at most 2 child nodes, and at most one parent node
- The node with no parent: root
- A node with no children: leaf
- Node level: 1 if root, 1+parent's level otherwise
- Tree height: maximum level

More on binary trees

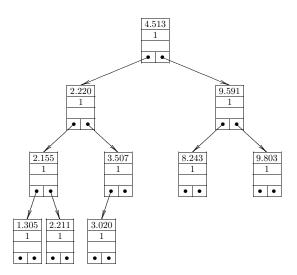
Full tree:

- All leaves at same level
- All non-leaves have 2 children

Complete tree:

- Full down to level h-1
- Level *h* is filled "left to right"

Binary search trees



Node property:

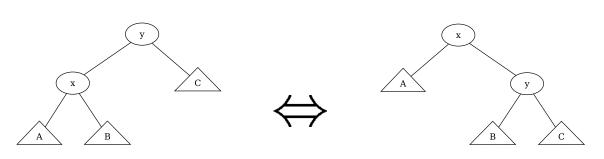
Left child value \leq Node value \leq Right child value

Binary search trees for event lists

- Leftmost node is most imminent
- Worst-case insert: $\mathcal{O}(h)$
- Worst-case delete: $\mathcal{O}(h)$
- Unbalanced trees: easier to implement
 - Height of tree h can be as large as n
- Balanced trees: need to rotate nodes
 - Height can be limited to $h = \mathcal{O}(\log n)$
 - AVL, red-black, Splay trees are examples

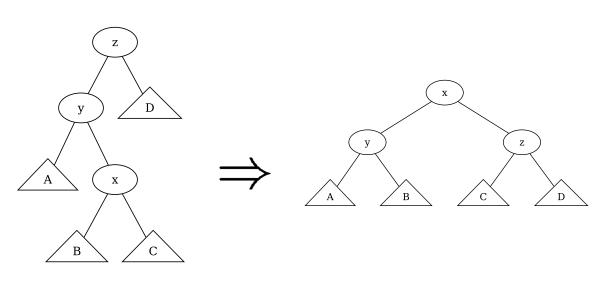
Splay Tree Rotations (A, B, C & D are Subtrees)

"Standard Rotation" Moves x to its Parent's Location



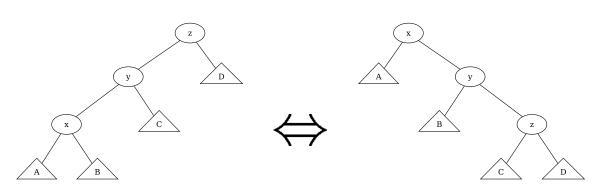
Splay Tree Rotations (A, B, C & D are Subtrees)

"Zig-Zag" Moves x to its Grandparent's Location



Splay Tree Rotations (A, B, C & D are Subtrees)

"Zig-Zig" Moves x to its Grandparent's Location



Splay Tree Operations

Philosophy: by splaying a recently accessed node to the root, keep "nearby nodes" near the top of the tree. Any node can be splayed to the root with a combination of to-grandparent Zig operations and perhaps one standard rotation.

Insertion Standard BST insertion, splay the inserted node to the root.

Deletion Standard BST deletion (recall non-trivial deletion: replace to-be-removed node with "leftmost of right tree" or "rightmost of left tree"), splay the *parent* of deleted node to the root.

Search Splay the found node to the root.

- \triangleright Amortized equivilant performance ($\log n$) with no additional memory overhead.
- ► You can **always** splay simple BSTs

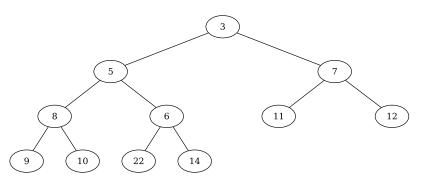
Heaps as event lists

- Always a complete binary tree
- Root node is most imminent.
- Insert, delete: maintain heap property by swapping nodes with parent
 - Easier to implement than balanced binary search trees
- Worst-case insert: $\mathcal{O}(\log n)$
- Worst-case delete: $\mathcal{O}(\log n)$
- Searching for arbitrary event: $\mathcal{O}(n)$

Priority Queues ("Heaps")

index (i)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
value	3	5	7	8	6	11	12	9	10	22	14				

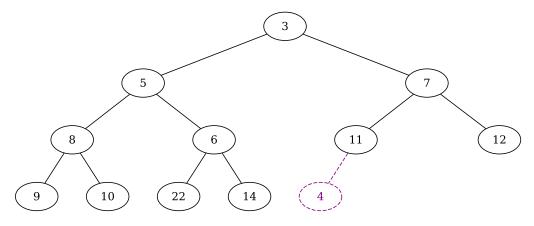
$$\underbrace{\textit{leftChild}(i) = 2i + 1 \quad \textit{rightChild}(i) = 2i + 2}_{i \geq 0} \quad \textit{parent}(i) = \left \lfloor \frac{i - 1}{2} \right \rfloor \quad i > 0$$



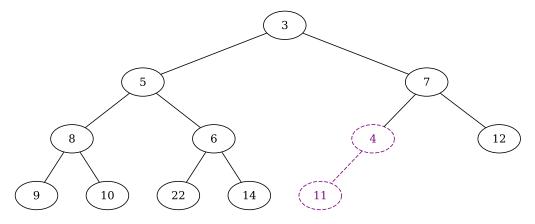
Invariant Property: Any parent has higher priority (**smaller activation time**) than either of its children (ie: all descendents).

Heap definition: using specific access equations on an array (vector) so that it can be thought to hold a complete binary tree in memory (given n elements).

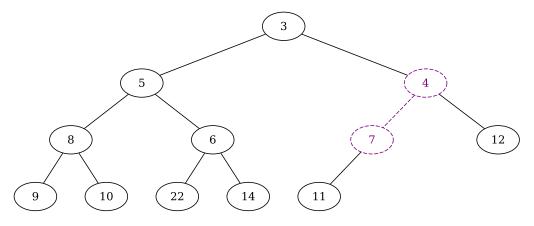
Place new entry in first empty leaf slot, may require increasing heap memory allocation.



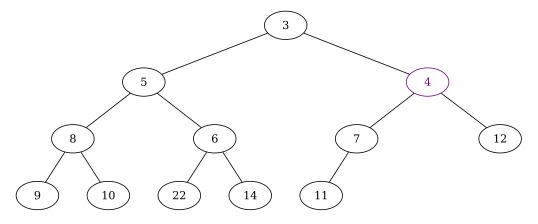
"Bubble," "percolate," or push up: swap with node 11 to maintain invariant property.

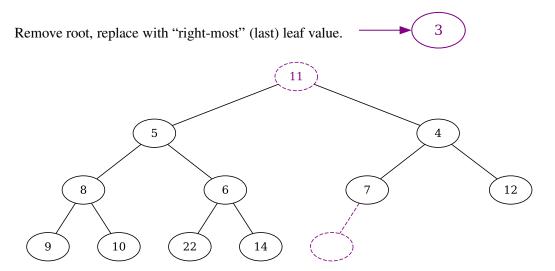


"Bubble," "percolate," or push up: swap with node 7.

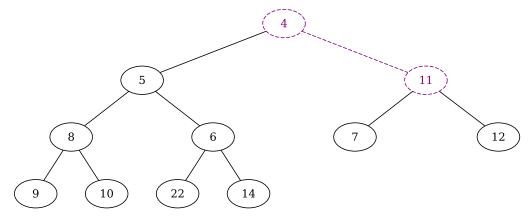


Finished, priority queue invariant property restored.

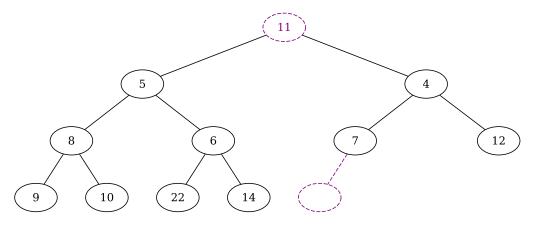




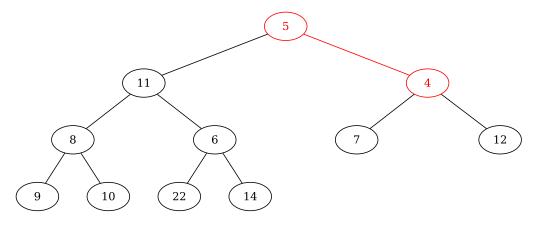
Push down: swap with node 4 to maintain invariant property (always swap with the higher priority child).



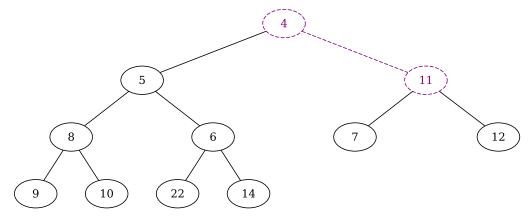
Why not swap with 5 and then 6?



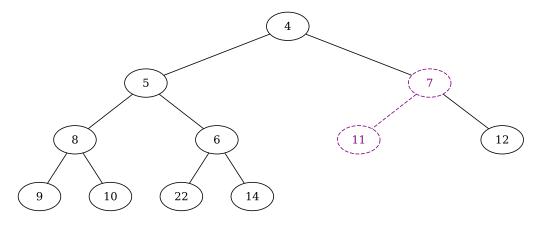
Why not swap with 5 and then 6?



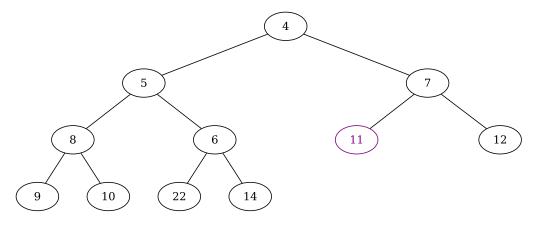
Push down: swap with node 4 to maintain invariant property (always swap with the higher priority child).



Push down: swap with node 7.



Finished, priority queue invariant property restored.



C++ std::priority_queue Event operator<()

```
class Event {
    // C++ requirement: strict weak ordering
    bool operator < ( const Event& rhs ) const
        // .at is activation time of the event
        if( this->at == rhs.at) {
            // the comparison of type is arbitrary
            // either < or > will work, but NOT <=, >=
            return this->type < rhs.type;
        // inverted! we want the least
        // activation time to have
        // higher priority
        return ( this->at > rhs.at );
```

Java java.util.PriorityQueue Event compareTo()

```
public class Event implements Comparable < Event > {
    @Override
    public int compareTo( Event rhs )
        if( this.at == rhs.at ) {
            // if you have simple enumerated types...
            return this.type - rhs.type;
            // or if follow the "everything must be
            // a class" philosophy
            // return this.type.compareTo( rhs.type );
        if( this.at < rhs.at ) return -1;</pre>
        return 1:
```

Python queue . PriorityQueue Event __lt__()

```
class Event :
    def __lt__( self, rhs ) :
        if self.at == rhs.at :
            return self.type < rhs.type
        return self.at < rhs.at
:</pre>
```

Hybrid schemes

- If *n* is small, a simple structure may work best
- If *n* is large, a tree structure should work well
- One hybrid scheme: change data structures. E.g.:
 - When *n* increases above 15, change to heap
 - When *n* decreases below 6, change to ordered list

Think-Type-Receive (text section 5.3.3)

A timesharing computer system (as in isengard.mines.edu) with N (ssh) users connected. Each user behaves in a similar fashion:

- i. They **think** for Uniform(0, 10) s
- ii. They **type** Equilikely(5,15) keystrokes, each taking Uniform(0.15,35) s
- iii. They **receive** a response of Equilikely(50,300) characters each requiring 1/120 s for transmission (ok, not *quite* ssh)

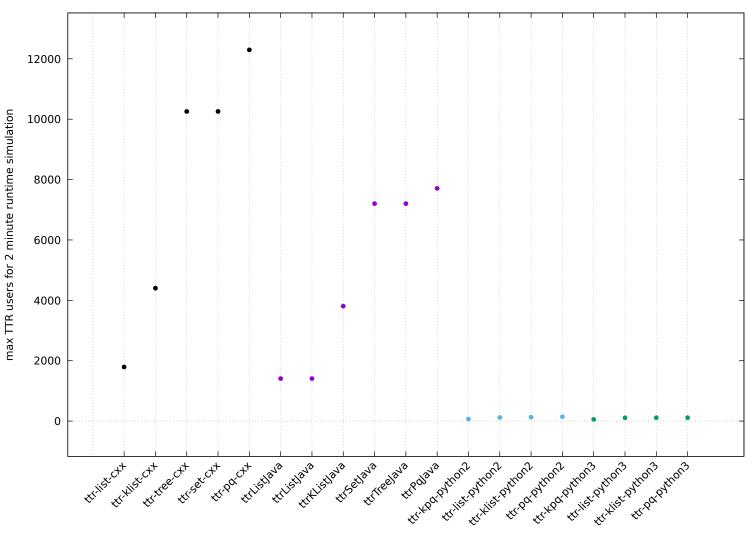
Probability of a user being in a particular state:

thinking ≈ 0.56 typing ≈ 0.28 receiving ≈ 0.16

Expected length of a think-type-receive cycle: 8.9583 s

Number of events generated per user (on average, per cycle): 186, or

 \approx 20 per simulation second



Hendricksen's algorithm

- Uses binary search tree and ordered list simultaneously
- Ordered list:
 - Doubly linked
 - Ordered by event time
 - ullet Contains "dummy" events with time $-\infty$ and ∞
- Binary tree:
 - Nodes for a subset of event times
 - Node format:

Pointer to next lower time tree node
Pointer to left child tree node
Pointer to right child tree node
Event time
Pointer to the event notice

Operations using Hendricksen's algorithm

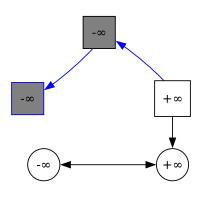
- Deletion: from front of list, tree is not "fixed", $\mathcal{O}(1)$
- Insertion (time t):
 - Find smallest time larger than t in tree
 - **2** Search backwards in list at most I positions (usually I = 4)
 - Position found: insert
 - Position not found: "pull" operation to rebalance tree:
 - Go to "next lower time" node in tree
 - Change that tree node to point to current list entry
 - Continue search at step (2)
 - If "next lower time" node not present, add a new level to tree
- Tends to have short average insertion time
- Implemented in simulation languages: GPSS, SLX, SLAM

Tree Node Connections

$\begin{array}{c} \text{next smallest} \rightarrow \\ \text{pointer into event list} \rightarrow \\ \text{copy of .at from} \rightarrow \end{array}$

- a. technically, \rightarrow is not required in node, can be derived from heap index.
- b. .at and \rightarrow (pointer) not always valid
- c. pointers to $-\infty$ not shown to reduce edge clutter in graphics
- d. "left child," "right child" edges also not shown, but relationship can be seen by relative position of nodes and →

Initial Structure

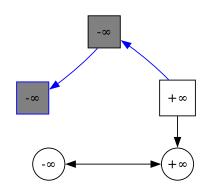


Tree Node Connections

$\begin{array}{c} \text{next smallest} \rightarrow \\ \text{pointer into event list} \rightarrow \\ \text{copy of .at from} \rightarrow \end{array}$

- e. Tree node copy of **activation time** (.at) treated as $-\infty$ if < t (simulation clock time).
- f. Traversal decision unlike standard BST

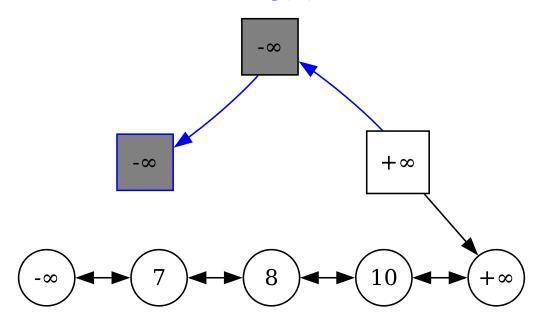
Initial Structure



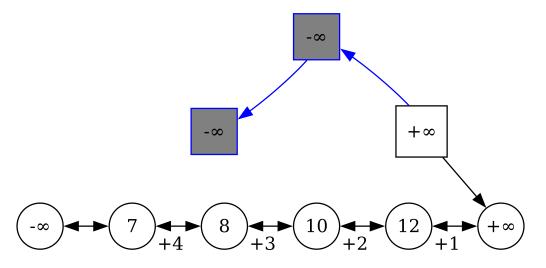
$$followBranch = \begin{cases} leftChild & \text{if } node.at > t \text{ and } node.at > event.at \\ rightChild & \text{otherwise} \end{cases}$$

IMPORTANT! Tree traversal always seeks (and remembers during traversal) the smallest *node.at* **larger than** *event.at*. If no such node is found, begin list search at $+\infty$.

After Inserting 8, 10, then 7

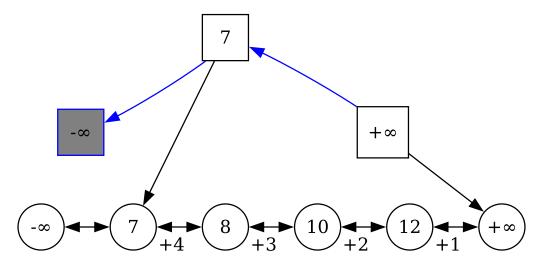


Insert 2 (doesn't find insertion location in l = 4 list nodes)



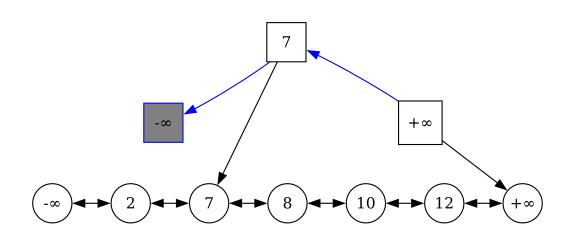
Traversal to $+\infty$, but the proper insertion location is not found within l=4 comparisons through the list.

Insert 2 (requires a "pull" operation)

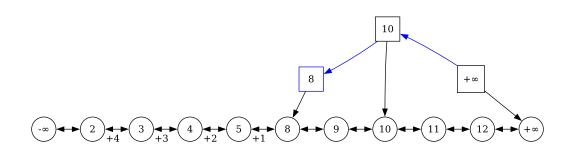


"Pull" the pointer belonging to the next smallest \rightarrow node (in this case the root) to 7 in the linked list, and continue searching for the insertion location for 2.

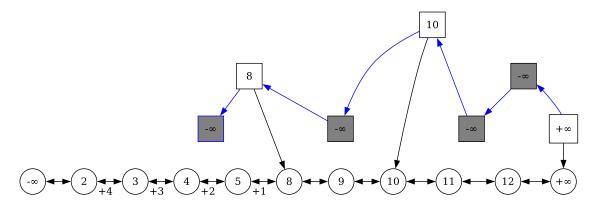
Insert 2 finished



Insert 1 (requires a new tree level)



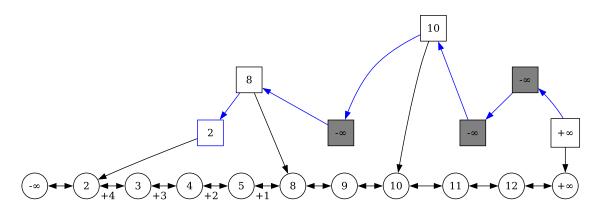
Insert 1 (new tree level initialized)



Notice the new next smallest \rightarrow relationships.

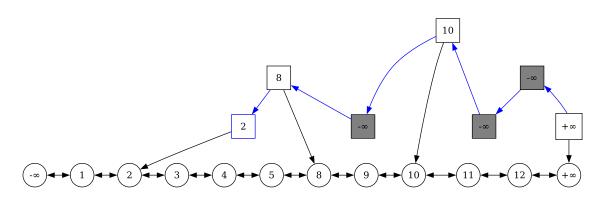
All tree node pointers into the linked list remain the same **except for the** $+\infty$ **pointer**, which is migrated from the previous owner to the previous owner's right child (the new "greatest" node of the heap).

Insert 1 (pull with a newly available tree node)

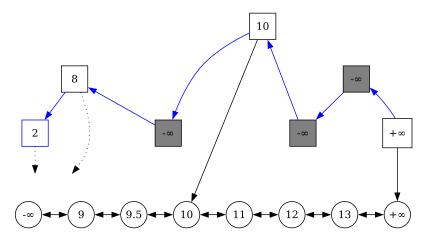


Pull the next smallest \rightarrow node from 8 (the tree node that pointed us to the list node where we began our search) to 2 in the linked list, continue searching for the proper insertion position for 1.

Insert 1 (finished)

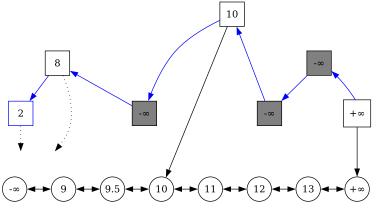


(After several events are processed) insert 8.2



The tree traversal will follow the path to 8, which is now a dangling pointer?!? Back to the drawing board?

(After several events are processed) insert 8.2



No worries, all is well. If the event with activation time 8 is no longer in the list, **the simulation clock** (t) **is** > 8, recall:

$$followBranch = \begin{cases} leftChild & \text{if } node.at > t \text{ and } node.at > event.at \\ rightChild & \text{otherwise} \end{cases}$$

IMPORTANT! Tree traversal always seeks (and remembers during traversal) the smallest *node.at* larger than *event.at*. If no such node is found, begin list search at $+\infty$.

(Amortized) enqueue $\Theta(\sqrt{n})$, dequeue O(1),

isolated search and deletion $O(\log n)$

THE AMORTIZED COMPLEXITY OF HENRIKSEN'S ALGORITHM

JEFFREY H. KINGSTON

Department of Computer Science, The University of Iowa, Iowa City, Iowa 52242, U.S.A.

Abstract.

Henriksen's algorithm is a priority queue implementation that has been proposed for the event list found in discrete event simulations. It offers several practical advantages over heaps and tree structures.

Although individual insertions of O(n) complexity can easily be demonstrated to exist, the "self-adjusting" nature of the data structure seems to ensure that these will be rare. For this reason, a better measure of total running time is the *amortized complexity*: the worst case over a sequence of operations, rather than for a single operation.

We show that Henriksen's algorithm has an amortized complexity of $\Theta(n^{1/2})$ per insertion, O(1) per extract_min operation, and $O(\log n)$ for isolated deletions.