Event Calendars (Lists) ‘£

October 30, 2025

Section 5.3: Event List Management

@ Large NES may have thousands of events in the event list

@ Such a NES will spend most of CPU time on managing event
list

o Efficient event management will reduce overall CPU time

@ Structures also applicable to SJF queue discipline

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Introduction

@ Event list: data structure of events, plus any extra associated
info

@ Elements in the list: event notices

@ List size classifications:

o Fixed maximum. No need for dynamic memory allocation.
e Variable or unknown maximum.

@ Application:

@ A specific model. We can exploit model characteristics.
s General-purpose (e.g., simulation language). Need robust DS

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Event list operations

@ Critical operations:
@ Insert / enqueue
@ “Schedule” an event
@ Delete / dequeue
@ Usually: process the next event
o Rarely: cancel an already-scheduled event
@ Other operations (not considered here):
o Change operation
o Search to change an attribute (e.g., scheduled time)
o Examine operation
@ Search to read an attribute
o Count operation
@ How many event notices in list?

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Event list criteria

@ Speed

@ Balance between sophisticated DS and overhead

o Consider average-case and worst-case performance
@ Robustness

o Performs well for many scheduling scenarios
o General purpose: performs well for many simulation models

@ Use diverse, representative benchmark models
@ Adaptability
@ Adapt to changes in event distributions

@ Adapt to changes in event list size
o Parameter-free

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Advanced event list management

@ Further discussion is for general case:
© Number of events in list varies
@ Maximum size of event list is unknown
© Structure of simulation model is unknown
@ We will discuss four structures:

© Multiple linked lists
@ Binary search trees
© Heaps

@ Hybrid schemes

@ Other structures exist

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Multiple Linked Lists

Use k ordered lists

e © ¢ ¢

Insert into shortest list: worst case O(n/k)
Delete is O(k): check front of each list
Example for k =2, n =10 for ttr:

1.305 2.155 3.507 8.243 9.803
1 1 1 1 1
head next next next next next tail
. . [. [. pet @
2.211 2.220 3.020 4.513 9.591
1 1 1 1 1
head next next next next next tail
. . L L L . @

Discrete-Event Simulation: A First Course

Section 5.3:

Event List Management

Issues for Multiple Linked Lists

@ Should k be fixed, or allowed to vary?

o If fixed, what is a good k7
@ If variable, decide

o When to increase or decrease k (as a function of n)
@ How to increase k: split lists or start new?
@ How to decrease k: merge lists?

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Recall:

@ Each node has at most 2 child nodes, and at most one parent
node

@ The node with no parent: root
@ A node with no children: fleaf
@ Node level: 1 if root, 1+parent’s level otherwise

@ Tree height: maximum level

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

More on binary trees

Full tree: Complete tree:
o All leaves at same level @ Full down to level h—1
@ All non-leaves have 2 @ Level h is filled “left to
children right”

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Binary search trees

4.513
1
/» \ ‘\\
2.220 9.591
1 1
| \\ | '\\
2.155 3.507 8.243 9.803
1 1 1 1
3K e Te Ts
1.305][2.211] [3.020
1 1 1
L] | L] L] l L] L] ‘ L]
@ Node property: Left child value < Node value < Right child value

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Binary search trees for event lists

Leftmost node is most imminent
Worst-case insert: O(h)

Worst-case delete: O(h)
Unbalanced trees: easier to implement

e © ¢ ¢

o Height of tree h can be as large as n
Balanced trees: need to rotate nodes

@ Height can be limited to h = O(log n)
@ AVL, red-black, Splay trees are examples

(]

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Splay Tree Rotations (A, B, C & D are Subtrees)

“Standard Rotation’” Moves x to its Parent’s Location

Splay Tree Rotations (A, B, C & D are Subtrees)

“Zig-Zag” Moves x to its Grandparent’s Location

Splay Tree Rotations (A, B, C & D are Subtrees)

“Zig-Zig” Moves x to its Grandparent’s Location

(=0
VAN
CO RN >

Splay Tree Operations

Philosophy: by splaying a recently accessed node to the root, keep “nearby nodes” near the top of
the tree. Any node can be splayed to the root with a combination of to-grandparent Zig operations
and perhaps one standard rotation.

Insertion Standard BST insertion, splay the inserted node to the root.

Deletion Standard BST deletion (recall non-trivial deletion: replace to-be-removed node with
“leftmost of right tree” or “rightmost of left tree”), splay the parent of deleted node to
the root.

Search Splay the found node to the root.

> Amortized equivilant performance (logn) with no additional memory overhead.
» You can always splay simple BSTs

Heaps as event lists

Always a complete binary tree

Root node is most imminent

Insert, delete: maintain heap property by swapping nodes with
parent

@ Easier to implement than balanced binary search trees

Worst-case insert: O(log n)

Worst-case delete: O(log n)

Searching for arbitrary event: O(n)

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Priority Queues (‘Heaps”)

index()) | 0|1]|2[3|4] 5 6 | 7] 8 9 (10| 11|12 |13 | 14
315718611 (12]9]10]|22] 14

value

i—1
leftChild(i) =2i+1 rightChild(iy=2i+2 parent(i) = {l 5 J i>0

Invariant Property: Any parent has higher priority (smaller activation time) than either of its

children (ie: all descendents).
Heap definition: using specific access equations on an array (vector) so that it can be thought to hold a complete binary tree in memory (given n elements).

Priority Queues — Insert 4 (enqueue event)

Place new entry in first empty leaf slot, may require increasing heap memory allocation.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — Insert 4 (enqueue event)

“Bubble,” “percolate,” or push up: swap with node 11 to maintain invariant property.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — Insert 4 (enqueue event)

“Bubble,” “percolate,” or push up: swap with node 7.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — Insert 4 (enqueue event)

Finished, priority queue invariant property restored.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Remove root, replace with “right-most” (last) leaf value. —’®

PN
4 \

v)

~ 7

/
P
- N
/ \
1
\ /,
o _-

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Push down: swap with node 4 to maintain invariant property (always swap with the higher priority
child).

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Why not swap with 5 and then 6?

P

-~ N
/ \
I
\, ,’
o -

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Why not swap with 5 and then 6?

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Push down: swap with node 4 to maintain invariant property (always swap with the higher priority
child).

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Push down: swap with node 7.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

Priority Queues — pop (dequeue imminent event)

Finished, priority queue invariant property restored.

Invariant Property: Any parent has higher priority (smaller activation time) than either of its
children (ie: all descendents).

C++ std: :priority queue Event operator< ()

class Event {

// C++ requirement: strict weak ordering
bool operator<(const Event& rhs) const
{
// .at 1is activation time of the event
if(this->at == rhs.at) {
// the comparison of type 1s arbitrary
// either < or > will work, but NOT <=, >=
return this->type < rhs.type;
}
// inverted! we want the least
// activation time to have
// higher priority
return (this->at > rhs.at);

Java java.util.PriorityQueue Event compareTo ()

public class Event implements Comparable<Event> {

@Override
public int compareTo (Event rhs)
{
if(this.at == rhs.at) {
// 1f you have simple enumerated types...
return this.type - rhs.type;
// or 1if follow the "everything must be
// a class" philosophy
// return this.type.compareTo(rhs.type);
}
if(this.at < rhs.at) return -1;
return 1;

Python queue.PriorityQueue Event 1t ()

class Event

def __1t__ (self, rhs)
if self.at == rhs.at
return self.type < rhs.type
return self.at < rhs.at

Hybrid schemes

@ If nis small, a simple structure may work best
o If nis large, a tree structure should work well

@ One hybrid scheme: change data structures. E.g.:

@ When n increases above 15, change to heap
@ When n decreases below 6, change to ordered list

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Think-Type-Receive (text section 5.3.3)

A timesharing computer system (as in isengard.mines.edu) with N (ssh) users connected. Each
user behaves in a similar fashion:
i. They think for Uniform(0,10) s
ii. They type Equilikely(5,15) keystrokes, each taking Uniform(0.15,35) s
iii. They receive a response of Equilikely(50,300) characters each requiring 1/120 s for
transmission (ok, not quite ssh)

Probability of a user being in a particular state:
thinking ~0.56 typing ~ 0.28 receiving ~ 0.16
Expected length of a think-type-receive cycle: 8.9583 s
Number of events generated per user (on average, per cycle): 186, or
~ 20 per simulation second

‘We can easily envision a similar simulation for modern cloud computing

max TTR users for 2 minute runtime simulation

Practical Event List Data Structures

12000

10000 [

8000 [

6000 [

4000

2000 [

i
C C O O < \,’b \’b X X \’b \’0 O O
\‘:}' \b\‘:}’ «Q,Q’ 6® (Qo‘ \)R;' \}f‘;' o é’ é’ &‘Q,Q’ 80* Q\\{S\ Q\\‘{S\
& > X < & < <) X 5 B h
R A S & & SN

Hendricksen's algorithm

@ Uses binary search tree and ordered list simultaneously
@ Ordered list:

¢ Doubly linked

@ Ordered by event time

o Contains "dummy” events with time —oco and oo
@ Binary tree:

@ Nodes for a subset of event times
@ Node format:

Pointer to next lower time tree node
Pointer to left child tree node
Pointer to right child tree node
Event time
Pointer to the event notice

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Operations using Hendricksen's algorithm

@ Deletion: from front of list, tree is not “fixed”, O(1)
@ Insertion (time t):
© Find smallest time larger than t in tree
© Search backwards in list at most / positions (usually / = 4)
© Position found: insert
@ Position not found: “pull” operation to rebalance tree:
@ Go to “next lower time” node in tree
Change that tree node to point to current list entry

°
o Continue search at step (2)
@ If “next lower time” node not present, add a new level to tree

@ Tends to have short average insertion time
@ Implemented in simulation languages: GPSS, SLX, SLAM

Discrete-Event Simulation: A First Course Section 5.3: Event List Management

Hendricksen’s Algorithm

Tree Node Connections
Initial Structure

next smallest —
pointer into event list —
copy of .at from —

. technically, — is not required in node, can be derived

from heap index.
b. .at and — (pointer) not always valid . te

. pointers to —oo not shown to reduce edge clutter in
graphics

. “left child,” “right child” edges also not shown, but . < > ‘
relationship can be seen by relative position of nodes

and —

Hendricksen’s Algorithm

. Initial Structure
Tree Node Connections

next smallest —
pointer into event list —
copy of .at from —

-] -
e. Tree node copy of activation time (.at) treated as l
—oo if < ¢ (simulation clock time).
f. Traversal decision unlike standard BST
leftChild if node.at >t and node.at > event.at

followBranch = { rightChild otherwise

IMPORTANT! Tree traversal always seeks (and remembers during traversal) the smallest node.at
larger than event.at. If no such node is found, begin list search at 4-oo.

Henriksen’s Algorithm
After Inserting 8, 10, then 7

+ o0

%@H‘H‘H\O

Henriksen’s Algorithm

Insert 2 (doesn’t find insertion location in / =4 list nodes)

Traversal to +oo, but the proper insertion location is not found within / = 4 comparisons through
the list.

Henriksen’s Algorithm

Insert 2 (requires a “pull” operation)

7

“Pull” the pointer belonging to the next smallest — node (in this case the root) to 7 in the linked
list, and continue searching for the insertion location for 2.

Henriksen’s Algorithm
Insert 2 finished

(O (D (D)

Henriksen’s Algorithm

Insert 1 (requires a new tree level)

10

OO Ora OO O O O O O ©

Henriksen’s Algorithm

Insert 1 (new tree level initialized)

(DD (D (O (D (D1 (2)()

Notice the new next smallest — relationships.

All tree node pointers into the linked list remain the same except for the 4o pointer, which is
migrated from the previous owner to the previous owner’s right child (the new “greatest” node of
the heap).

Henriksen’s Algorithm

Insert 1 (pull with a newly available tree node)

10

s \ﬁ
OGO WG WG

Pull the next smallest — node from 8 (the tree node that pointed us to the list node where we began
our search) to 2 in the linked list, continue searching for the proper insertion position for 1.

Henriksen’s Algorithm
Insert 1 (finished)

10

10

11

12

+ o0

Henriksen’s Algorithm

(After several events are processed) insert 8.2

1

OO O O O O O ©

The tree traversal will follow the path to 8, which is now a dangling pointer?!?
Back to the drawing board?

Henriksen’s Algorithm

(After several events are processed) insert 8.2

10

OO O O O O O ©

No worries, all is well. If the event with activation time 8 is no longer in the list, the simulation clock (¢) is
> 8, recall:
leftChild if node.at >t and node.at > event.at

followBranch = { rightChild otherwise

IMPORTANT! Tree traversal always seeks (and remembers during traversal) the smallest node.at larger
than event.at. If no such node is found, begin list search at +co.

Henriksen’s Algorithm
(Amortized) enqueue O(/n), dequeue O(1),

isolated search and deletion O(logn)

THE AMORTIZED COMPLEXITY
OF HENRIKSEN’S ALGORITHM

JEFFREY H. KINGSTON
Department of Computer Science, The University of lowa, Iowa City, lowa 52242, U.S.A.

Abstract.

Henriksen's algorithm is a priority queue implementation that has been proposed for the event list
found in discrete event simulations. It offers several practical advantages over heaps and tree
structures,

Although individual insertions of O(n) complexity can easily be demonstrated to exist, the “self-
adjusting” nature of the data structure seems to ensure that these will be rare. For this reason, a better
measure of total running time is the amortized complexity: the worst case over a sequence of
operations, rather than for a single operation.

We show that Henriksen's algorithm has an amortized complexity of ©(n'/?) per insertion, O(1) per
extract_min operation, and O(logn) for isolated deletions.

