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2.2.5 Write y (x) = a(x) — B(x), where a(x) = a(x mod ¢) and px)=r|x/q], with m =
aq +r and r = m mod a. Prove that, if r < ¢, then for all x € X, both a(x) and B(x)
are in {0,1,2,...,m —1}.

2.2.6 Is Algorithm 2.2.1 valid if m is not prime? If not, how should it be modified?

2.2.7 (a) Implement a correct version of Random that uses floating-point arithmetic and do
a timing study. (») Comment.

2.2.8 Prove that, if a, x, g are positive integers, then ax mod ag = a(x mod q). ‘

2.2.9 You have been hired as a consultant by XYZ Inc. to assess the market potential of

a relatively inexpensive hardware random-number generator they might develop for
simulation-computing applications. List all the technical reasons you can think of to
convince them this is a bad idea.

2.2.10  There are exactly 400 points in each of the figures in Example 2.2.7. (a) Why? (5) How
many points would there be if @ were not a full-period multiplier?

2211 Let m be the largest prime modulus less than or equal to 2'5—1. (See
Exercise 2.1.6.) (a) Compute all the corresponding modulus-compatible full-period
multipliers. (b) Comment on how this result relates to random-number generation on
systems that support 16-bit integer arithmetic only.

2.2.12  (a) Prove that, if m is prime with m mod 4 = 1, then a is a full-period multiplier if and
only if m — a is also a full-period multiplier. (b) What if m mod 4 = 37

2213  If m = 2% — 1, compute the x € X, for which 7* mod m = 48271.

2,214  The lines on the scatterplot in Figure 2.2.4 associated with the multiplier a = 16807
appear to be vertical. Argue that the lines must not be vertical, using the fact that
(a,m) = (16807,2°! — 1) is a full-period generator.

2.2.15  Figure out whether the multipliers associated with m = 23! — 1 given by Fishman
(2001) are modulus-compatible: a = 630360016, a = 742938285, a = 950706 376,
a=1226874159, a = 62089911, and a = 1343 714 438.

2.3 MONTE CARLO SIMULATION

In this section, we will consider Monte Carlo simulation. (See the taxonomy in Figure 1.1.1.)
Specifically, the discussion will focus on the estimation of one or more probabilities by using the
functions in the library rng to implement an experimental technique whose validity is based on
what is known as the frequency theory of probability.

2.3.1 Probability

There are two approaches to probability, both of which will be illustrated in this section. One
approach is experimental (empirical), the other is theoretical (axiomatic).

Empirical Probability

LHmes

Definition 2.3.1  If a random experiment is repeated 1 times and if 72, is the number of
event A occurs (1, < i), then the relative frequency of occurrence of event A is n /. The
Trequency theory of probability asserts that this relative frequency converges 10 the probability

of A as n — o
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Based as 1t 15 on the acquisition ol expertmental data, Delinttion 2.3.1 15 also called the
cipirical or experimental definition of probability. By its reliance on arbitrarily many replications
ol the random experiment, the equation in Definition 2.3.1 1s related to the strong and weak laws
of laree numbers. Although the frequency theory of probability has limited theoretical importance,
It 1s the cornerstone of experimental statistics and simulation. Monte Carlo simulation uses the
[requency theory of probability in a natural way. The i1dea is simple yet profound. A computational
maodel is built that uses a random-number generator to simulate the random experiment. The
simulated experiment is then repeated many times (n) and the number of times event A occurs
(11,) is recorded. If n is large, the ratio n,/n is a good point estimate of the probability Pr(.A).

Axiomatic Probability. In contrast to the frequency theory, the formal study of probability is
usually based on the axiomatic theory of probability. This is the familiar set-theoretic approach
0 probability, in which the primary emphasis is on the mathematical construction of a sample
space with an associated probability function Pr(A) defined for all events A in the sample space.
T'he axiomatic theory of probability and the frequency theory of probability are best viewed as
complementary. Doing one brings insight to the other. The best solution to any probability problem
15 a mathematical solution established via the axiomatic method and verified experimentally via
an independent Monte Carlo simulation. Many probability problems, however, are just too hard
(0 solve mathematically. For those problems, Monte Carlo simulation may be the only viable
approach. The axiomatic and frequency theories of probability are also complementary in the use
of the latter to explain the former—that 1s, the significance of a mathematically derived probability
Pr(.A) is commonly explained by interpreting the probability as the relative frequency with which
the event .4 would occur if the random experiment were to be repeated many times.

Example 2.3.1

Roll two dice and observe the up faces. This classic random experiment i1s simple enough
that 1t can be analyzed by using a special case of the axiomatic approach: Construct
a finite sample space with all points equally likely, then to evaluate Pr(.A), count the
points in A and divide by the cardmality of the sample space. That 1s, think of the dice
as distinguishable (say, one 1s green and the other is red) and construct the sample space
as a set of 62 = 36 ordered pairs of the form (a, b), where both ¢ and b can take on
any integer value between 1 and 6: |

(L1 @))€l 3) (lydy (le8) 61, 6)
(2, 1) (2,2) (2,3) (2.4) (2.5) (&:06)
(3, 1) (3,2) 3.3 «(34) 3.3 n3,6)
“4,1) 4,2) 4,3) 4,4 @,5) @4,0)
G, 1) 5,2) (0,3 5,4) (5,3 (5,6)
6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

If the dice are fair, the 36 points in the sample space are equally likely, each with
probability 1/36. If the two up faces are summed, an integer-valued random variable,
say X, is defined, having as possible values 2 through 12, inclusive. The probability
associated with each possible value of the sum can be found by counting points in the
sample space. For example, there are six points in the sample space corresponding to
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the sum 7 (this is \A). Thus, if two dice are rolled, the probability that the up faces will
sum to 7 is Pr(X = 7) = 6/36 = 1/6. In this way, the following table of probabilities

can be constructed:

sum, x S s B 8 .6 . T B 870 L 12
Pr(X =x) | 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

As a consistency check, note that the probabilities are nonnegative and sum to 1.

Interpretation. Because the (axiomatic) probability of rolling a 7 is 1 /6, in 6000 replications
of the two-dice experiment, we expect to see a total of 7 occur approximately 1000 times. This
18 the relative-frequency interpretation of the mathematically derived (axiomatic) probability 1/6;
in the “long run,” 7 will occur 1/6 of the time. In the “short run,” the relative frequency of 7’s
can be quite different from 1/6, a fact that is well known to any gambler.

Alternatively, if it were not so easy to figure out the probability of rolling a 7 via the
axiomatic approach—for example, if the dice were not fair—then Pr(X = 7) could be estimated
by replicating the experiment many times and calculating the relative frequency of occurrence of
7’s. Doing this with a random-number generator is an excellent simple example of what Monte
Carlo simulation is all about. (See Exercise 2.3.4.)

Probability estimation via Monte Carlo simulation will be illustrated in this section with two
examples of classic probability problems. In both cases, the axiomatic solution and Monte Carlo
estimates are compared. Before we do so, however, a few important definitions are needed.

2.3.2 Random Variates

Definition 2.3.2 A random variare is an algorithmically generated realization of a random
variable.”

If Random is a good random-number generator, a Uniform (0. 1) random variate is what
is generated by the assignment ¥ = Random() .

e

Uniform Random Variates. Given the ability to generate a Uniform (0, 1) random variate,
what if we need a random variate, say x, that is Uniform(a, b)? That is, suppose g and b are
real-valued parameters with @ < b and that we want to generate values of x in such a way that
all real numbers between a and b are equally likely. How should this be done?

The answer 1s to first use ¥ = Random() to generate a Uniform(0, 1) random variate u,
and to then transform from u to x via the equation x = a + (b — a)u, as shown in Figure 2.3.1.
Values of u between 0.0 and 1.0 are mapped linearly to values of x between a and b, as illustrated

by this set of equivalences:
O<u<l < 0<b-—-au<b-—a
s a<at+b—au<a+ b -—a)

& a<x <b.

*See Chapters 6 and 7 for a discussion of discrete mnd continuous random varialles
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[
x=a+ b —a)u

| |
0.0 U 1.0

Figure 2.3.1 Geometry associated with Uniform(a, b) variate generation.

o

Definition 2.3.3 This ANSI C function generates a Uniform(a, ) random variate,

double Uniform(double «a, double b) // use a < b
[

return {(a + (b - a) * Random());

)

Example 2.3.2

A point x is selected at random in the interval (a, b) to form two subintervals of length
x —a and b — x. What is the probability that the larger subinterval is more than twice
the length of the smaller subinterval? For particular values of a, b, the relative-frequency
(Monte Carlo) approach to probability is easily applied in this case by generating x as
a Uniform(a, b) random variate. The details are left as Exercise 2.3.10.

Equilikely Random Variates. Uniform(0, 1) random variates can also be used to generate
integer-valued random variates. In particular, let a and b be integer-valued parameters with a < b,
and suppose we want to generate values of an integer-valued random variate x in such a way that
all integers between a and b inclusive are equally likely. In this case, x is an Equilikely(a, b)
random variate. How can this random variate be generated?

If u = Random () then x can be generated via the transformation x = a + [(b—a + 1) u].

That 1s,

O<u<l & 0<b—a+Dhu<b—a+1
— 0 |(b—a+1ul] <b-—a
= a<a+|(b—a+1)u|l <b
& a<x<bh

and so values of # between 0.0 and 1.0 are mapped linearly in a discrete manner to integer values
of x between a and b inclusive. The geometric representation of this transformation is identical
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to the corresponding Uniform(a, b) geometry shown in Figure 2.3.1, except that the diagonal line
will stairstep, in keeping with the discrete character of the transformation.

TEL - B e i

Definition 2.3.4 This ANSI C function generates an Lguilikely (a, b)Y random variate.

long Equilikely(long «, long b) // use a <« b

{

return (¢ + {(long) ((b - a + 1) * Random()));

Example 2.3.3
To generate a random variate x that simulates rolling two fair dice and summing the
resulting up faces, use

x = Equilikely (1, 6) + Equilikely (1, 6);
Note that this is not equivalent to

x = Equilikely (2, 12):;

Example 2.3.4
To select an element x at random from the array ¢[0], a[1], ..., a[n — 1], use

i = Equilikely (0, n - 1); // pick an array index at random
x ="alil;

See Section 6.5 for more discussion of this notion.

We are now ready to consider two complete classic Monte Carlo simulation examples. The
first makes use of Equilikely (a, b) random variates, the other makes use of Uniform(a, b) random
variates. Many other types of random variates are considered in later chapters, primarily in
discrete-event-simulation applications.

2.3.3 Galileo’s Dice

Example 2.3.5

Three fair dice are rolled and the random variable X is the sum of the three up faces.
Which sum is more likely, a 9 or a 10? This example is alleged to have been solved
by Galileo when asked by a gambler to explain why 10’s seemed to appear more
often than 9’s as the sum of three dice. The axiomatic theory of probability can be
used to solve this problem in several ways; the most direct, albeit tedious. approach is
based on an extension of Example 2.3.1. That is, the sample space for the three-dice
random experiment can be constructed as a set of 6% =216 cqually Tikely possible
outcomes. By listing all 216 of these and counting the ones that yield a sum of 9 or 10,




respectively (axiomatic does not necessarily mean elegant), it can be verified that the
probabilities are

27
Pr(X = 0) = ~0.116 and Pr(X = 10) = = (.123.
' = o = 4 bir B

50, a 10 is slightly more likely than a 9; in 2160 rolls of three dice, we expect to see
a4 10 approximately 270 times and a 9 approximately 20 times less.

Program galileo. As an alternative, Monte Carlo approach to Example 2.3.5, we can use
the sum of three Equilikely (1, 6) random variates to simulate the rolling of three dice and use the
computed relative frequencies of 9’s and 10’s to estimate these two probabilities. As it turns out,
Il 18 no more difficult to compute the relative frequencies of all the other possible sums as well
and, in this way, estimate the probability of each possible sum between 3 and 18. The program
(alileo does exactly that.

The simplicity of program galileo is compelling—that is the appeal of simulation. The
drawback of Monte Carlo simulation, however, is that the n — oo limit operation in Defini-
tion 2.3.1 can only be approximated; as a result, program galileo can only produce probability
e¢stimates. Moreover, as the following example illustrates, relative-frequency probability estimates
can converge slowly and erratically. Indeed, the n — oo limit in Definition 2.3.1 is not the tradi-
tional type of limit studied in calculus. That is, there is no guarantee that larger values of n will
always produce more accurate probability estimates. There is, however, the expectation that this
will be so. The mathematics involved in making this statement more precise is beyond the scope
of this book.

Given that relative-frequency probability estimates based on a finite number of replications
(finite n) have an inherent uncertainty, an important issue remains—how accurate are these
estimates? For a probability-estimation application with modest accuracy requirements, generally
1000 to 10000 replications is sufficient. For example, in Chapter 8, we will see that, to achieve
an estimate of the three-dice probability Pr(X = 10) = 0.125 that is accurate to +0.01 (with 95%
confidence), approximately 4400 replications are required. For applications with more stringent
accuracy requirements, even more replications would be required to reduce the uncertainty to an
acceptable level.

For now, we will largely avoid the issue of accuracy versus the number of replications,
except to observe that personal computers and workstations are inexpensive, time on them is free
for many people, and it is reasonable to expect that, as n becomes larger, the accuracy of the
probability estimates will tend to improve.

Example 2.3.6

Figure 2.3.2 illustrates the relatively slow and somewhat erratic convergence of relative-
frequency probability estimates for the three-dice random experiment. Three sequences
of Pr(X = 10) estimates are shown, corresponding to the three rng initial seeds indi-
cated. A point is plotted for n = 20, 40, ..., 1000. The horizontal line represents the
axiomatic probability 0.125. A figure for Pr(X = 9) estimates would be similar.
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Figure 2.3.2 Program galileo output.

Only probability estimates up to the first 1000 replications are shown. Do not interpret
this to mean that there 1s something magic about 1000. There is an inherent uncertainty
in any Monte Carlo probability estimate. The magnitude of the uncertainty is dictated,
in part, by the number of replications; increasing the number of replications reduces the

uncertainty.

Multiple Initial Seeds. Because program galileo uses PutSeed (0) to initialize the state
of the random-number generator, each time the program is run the user is prompted to supply
an initial seed. As Example 2.3.6 illustrates, different initial seeds will cause different sequences
of three-dice results to be generated and, in that way, different probability estimates will be
produced. It is always good practice to run a Monte Carlo simulation program multiple times,
using a different initial seed for each run, and pay close attention to how the results vary from run
to run. If the variability is too large, the number of replications (n) per run should be increased

(perhaps a lot—see Chapter 8).

2.3.4 Geometric Applications

The Monte Carlo-simulation solution to the three-dice problem was based on the use of Equi-
likely (a, b) random variates. The use of this discrete random variate 1s common in Monte Carlo
simulation because of the large variety of stochastic models based on a “select at random from
the finite set {a, ..., b}’ characterization. For comparison, we now consider continuous Monte
Carlo simulation examples with geometric applications based on the use of Uniform (a, b) random
variates to simulate the selection of a point “at random in the interval (a, b).”
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Ioxample 2.3.7
Many Monte Carlo-simulation applications that use Uniform(a, b) random variates
involve the experimental solution of geometry-based probability problems. To solve
these problems, it is typical to use a Uniform(a, b) random variate to position points in
t(wo or more dimensions at random, subject to geometric constraints.

For example, to generate a point (x, y) at random inside a rectangle with opposite
corners at (o, B1) and (crp, B) as illustrated on the left-hand side of Figure 2.3.3,

use

x = Uniform(ay, o2) ;
y = Uniform(81, B2);

32“ Yot —
ﬁ_
i il b ol ('xs})
|
b1 - |
I I
| | | T
X1 X 04} 9 X

Figure 2.3.3 Generating random points inside a rectangle and on
the circumference of a circle.

The bivariate random variate (x, y) so generated is Uniform within the rectangle—all
locations are equally likely. Similarly, to generate a point (x, y) at random on the
circumference of a circle with radius p and center (o, 8), as illustrated on the right-hand

side of Figure 2.3.3, use

8 = Uniform(-m, m);
x=ﬂ+p*c‘!{}5(9);‘
y =8 + p * sin(0) ;

The resulting bivariate random variate (x, y) i1s Uniform on the circumference of the
circle. In both cases the phrase “at random” is a synonym for Uniform, properly inter-
preted relative to the geometry of the figure.
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Example 2.3.8
It might seem natural to generalize the second part of Example 2.3.7 to generate a point
(x, ¥) at random interior to the circle of radius p centered at («, B) as follows:

@ = Uniform(-m, 7m);
r = Uniform(0, p);

X =a +r * cos(f);
y = 8 +r * sin(0) ;

This algorithm 1s not correct, however, because the distribution of points so gener-
ated will not be uniform interior to the circle. Instead, points will be more densely
distributed close to the center than close to the circumference, as is illustrated in

Example 2.3.9.

Acceptance-Rejection. A correct approach to generating a point at random interior to a circle
is to generate a point at random within a circumscribing square, then either accept or reject the
point on the basis of whether it is within the circle. That is, points are generated uniformly in
a circumscribing square until a point falls within the circle, as summarized by the following
algorithm.

Algorithm 2.3.1 This algorithm uses the acceptance—-rejection technique to generate a point
(x, v) at random (uniformly) interior to a circle of radius p centered at («. f).

do {
x = Uniform(-p, p);
y = Uniform{-p, p);
P while (x % ¢ 9. 9y F y ne g % gl // rejection
% Tl o A e v
Y o= A ep g
return (x, ¥yl;

e e

The probability of acceptance in the do-while loop in Algorithm 2.3.1 is the ratio of the
area of the circle to the area of the circumscribed square, which is

2

T T
= — = (.785.
4p%2 4

p_._

Therefore, the algorithm will loop once with probability p, or twice with probability p(1 — p),
or three times with probability p(1 — p)?, etc., so that the expected (average) number of passes
through the loop per point generated 1is

p+2p(l—p)+3p(l—p) +4p(l—p) + .

It can be shown that this infinite geometric series converges (o L/ p o d/m = 1,273 (see
Section 6.1) and so the expected number of passes through the do whit e loop i Algorithm 2.3, 1
15 reasonably small,
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Although classie and etheient, Algorithm 2.3.1 15 somewhat esthetically unsatisfactory
because 1t "wastes™ at least two calls to Random with probability 1 —p =1—m/4 = 0.215.
Fhat 18, 1t seems reasonable to expect that there 1s a synchronized algorithm that generates the

(\, v) pairs using exactly two calls to Random. Such an algorithm exists; see Exercise 2.3.9.

Iixample 2.3.9

The scatterplot on the left-hand side of Figure 2.3.4 was generated using the (incor-
rect) algorithm in Example 2.3.8. The increased density of points near the origin is
cvident. In contrast, the figure on the right-hand side of Figure 2.3.4 was generated using
the (correct) acceptance—rejection technique in Algorithm 2.3.1. (For both figures, the
number of (x, y) points is 400, generated with an rng initial seed of 12345.)

Y

Figure 2.3.4 Incorrect and correct generation of points interior to a circle.

2.3.5 Buffon’'s Needle

The Uniform(a, b) random variate Monte Carlo simulation example in this section is the classic
Bujfon’s needle problem, which 1s one of the oldest known problems in geometric probability.
Buffon was a French naturalist of the eighteenth century who first posed and solved the problem
that bears his name. The solution of this problem suggests a Monte Carlo technique for esti-

mating .

Example 2.3.10

Suppose that an infinite family of infinitely long vertical lines are spaced one unit apart
in the (x, y) plane. If a needle of length r > 0 (and negligible width) is dropped at
random onto the plane, what 1s the probability that it will land crossing at least one
line?

One realization of this experiment is shown in Figure 2.3.5. In the particular real-
ization depicted, the needle does not cross one or more of the vertical lines. Obviously,
the probability of one or more crossings depends on three quantities: the length of the
needle », the horizontal position of one end of the needle (we arbitrarily choose the
left-hand endpoint), and the angle orientation of the needle from horizontal.
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Figure 2.3.5 Buffon needle realization.

Without loss of generality, we can assume that the needle falls with its left-hand
endpoint between the two parallel lines defined by x = 0 and x = 1. Let u be the x-
coordinate of the left-hand endpoint of the needle and let 6 be the angle of the needle
relative to the x-axis. The right-hand endpoint of the needle is to the right of x = u, as
illustrated in Figure 2.3.6.

0 U v 1

Figure 2.3.6 Buffon needle geometry.

The x-coordinate of the right-hand endpoint of the needle is v = y + rcosf and the
needle crosses at least one line if and only if v > 1. If the phrase “dropped at random”
1s interpreted (modeled) to mean that » and 6 are independent Uniform(0, 1) and
Uniform(—mn /2, m/2) random variables respectively, then the dropping of the needle can
be simulated by generating two Uniform (a, b) random variates, as in program buf fon.

Program buffon. Program buffon is a Monte Carlo simulation that can be used to estimate
the probability that the needle will cross at least one line. Note, in particular, the use of

PutSeed(-1) ; // any negative integer will do
GetSeed (&seed) ; // trap the value of the initial seed

printf ("with an initial seed of %1d", seed) ;

as the mechanism for initializing the random-number generator, By using this approach, each time
the program is run, a different initial seed will be supplicd by the system clock and printed along
with other program output,
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Interestingly, an mspection ol program buf fon illustrates how to solve the problem by
using the axiomatic approach, That 1s, this program generates points (6, u) at random (uniformly)
throughout the rectangle illustrated 1 Figure 2.3.7.
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() T |
—7/2 0 6 /2

Figure 2.3.7 Sample space of all (6, u) values.

The probability that the needle will cross at least one line is equivalent to the probability that a
(8, u) point (indicated by the ‘e’) will fall in the shaded region with the curved boundary defined
by the equation u = 1 — r cos(@). Because all points within the rectangle are equally likely, the
probability of interest is the area of the shaded region divided by the area of the rectangle. If
0 < r < 1, as illustrated, then the area of the shaded region is

/2 /2
n—f (l—rcnsﬁ)dﬂzrf cosfdl = i~ =2r
—m/2 —n/f2

Therefore, because the area of the rectangle 1s 7, the probability that the needle will cross at least
one line is 2r/m. The case r > 1 i1s left as an exercise.

Disclaimer. The simplicity of programs galileo and buffon is compelling. This simplicity
is possible because the associated static models are so simple. That simplicity makes it possible
to effectively short-circuit the first three model-development steps in Algorithm 1.1.1. Do not be
misled by this into thinking that a similar short-circuiting is desirable for more complicated static
systems or any dynamic stochastic system.

2.3.6 Exercises

2.3.1 (a) Derive the theoretical value of the probability of Buffon’s needle crossing at least
one line when r > 1. () Use Monte Carlo simulation to verify the correctness of your
result when r = 2.
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2.3.2

2.3.3

2.3.4

0 B

2.3.6

2.3.7

2.3.8

2.3.9

2.3.10

2.3.11

2.3.12

2.3.13
2.3.14

—

A rod of length 1 is broken at random into three pieces. (@) Use Monte Carlo simulation
to estimate the probability that the resulting three pieces form a triangle. (b) Explain
your interpretation of “at random” in this case. (¢) What is the axiomatic probability?
A fair coin 1s tossed once. If it comes up heads, a fair die is rolled, and you are paid
the number showing in dollars. If it comes up tails, two fair dice are rolled, and you
are paid the sum of the two numbers showing in dollars. Let X be the amount won.
Enumerate all the possible values of X and use Monte Carlo simulation to estimate the
probability of each.

Suppose that each die in a pair of dice is loaded (un-fair) in such a way that the 6-face
1s four times as likely as the opposite 1-face and each of the other four faces are twice
as likely as the 1-face. (a) Use Monte Carlo simulation to estimate the probability that,
if the dice are rolled, the sum of the two up-faces will be 7. (b) What is the axiomatic
probability?

(a) If two points are selected at random on the circumference of a circle of radius p,
use Monte Carlo simulation to estimate the probability that the distance between the
points is greater than p. (b) How does this probability depend on p?

You and I and eight other people are divided, at random, into two groups, each of size
five. Use Monte Carlo simulation to estimate the probability that we will both end up
in the same group.

Three dice are rolled and the largest of the three up faces is recorded. Let X be this
value. The possible values of X are 1, 2, ..., 6. Use Monte Carlo simulation to estimate
the probability of each possible value.

Three 1dentical boxes each contain two compartments. The first box has a $10 bill 1n
cach compartment. The second box has a $5 bill in each compartment. The third box
has a $10 bill in one compartment and a $5 bill in the other compartment. A box is
selected at random and one of compartments of that box is selected at random and 18
opened. If the compartment contains a $10 bill, use Monte Carlo simulation to estimate
the probability that the other compartment also contains a $10 bill.

(a) Correct the algorithm in Example 2.3.8. () How would you test this new algorithm
for correctness? Hint: The assignment r = Uniform (0, p) mustbe altered to make
large values of r more likely than small values.

(a) Use Monte Carlo simulation to estimate the probability in Example 2.3.2. (b) Verily
that the axiomatic approach yields the same probability. (¢) How does this probability
depend on a and b7

(a) Modify program galileo to estimate the probability of rolling a sum of 8 when
five fair dice are tossed. (b) Compare the estimated probability with the value obtained
by the axiomatic method.

Consider the intuitive (and incorrect) algorithm for generating a point uniformly in the
interior of a circle given in Example 2.3.8. Using this algorithm, find the probability of
being within a of the center of the circle, where 0 < @ < p. If the point generated was
truly a random point in the interior of the circle, what should this probability equal?
Use program buf fon to estimate .

Use Monte Carlo simulation to estimate the average distance between (wo points gener:
ated randomly 1n the mterior of a unit square
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ad s Use Monte Carlo simualation to estimate the average shortest circuit (a path that begins
and ends at one arbitrary point) among four points generated randomly in the interior
ol a unit square.
2010 Modily program buf fon to estimate & 30 times, using 10000 needle tosses per repli-
cation, Summarize the results of the 30 replications in a table or an appropriate figure.
W17 Consider the following two-dimensional Buffon needle problem. Suppose that an infinite
lfamily of infinitely long vertical and horizontal lines are spaced one unit apart in the
(x, y) plane, in a similar fashion to square tiles on the floor of a large room. A needle
of length r < 1 (and negligible width) is dropped at random onto the plane. If an
observer considered only the vertical crossings, the method for estimating 7 would
be 1dentical to the development in Section 2.3.5. Likewise, if an observer considered
only the horizontal crossings, the method for estimating = would also be identical to
the development in Section 2.3.5. What if the observer considered both vertical and
horizontal crossings? Develop a conceptual model for estimating 7 when both types
of crossings are considered simultaneously. Is this an appropriate technique for halving
the number of needle tosses necessary to achieve the same precision?

o

2.4 MONTE CARLO SIMULATION EXAMPLES

I'his section presents four applications of Monte Carlo simulation that are designed to angment the
¢lementary examples considered in Section 2.3. The applications have been chosen to highlight
the diversity of problems that can be addressed by Monte Carlo simulation and have been arranged
In increasing order of the complexity of their implementation. The problems are (1) estimating
the probability that the determinant of a 3 x 3 matrix of random numbers having a particular sign
pattern 18 positive (program det), (2) estimating the probability of winning in Craps (program
craps), (3) estimating the probability that a hatcheck girl will return all of the hats to the
wrong owners when she returns n hats at random (program hat) and (4) estimating the mean
lime to complete a stochastic activity network (program san). Although the axiomatic approach
o probability can be used to solve some of these problems, a minor twist in the assumptions
associated with the problems often sinks an elegant axiomatic solution. A minor twist in the
assumptions typically does not cause serious difficulties with the Monte Carlo simulation approach.

2.4.1 Random Matrices

Although the elementary definitions associated with matrices may be familiar to readers who have
taken a course in linear algebra, we begin by reviewing some elementary definitions associated
with matrices.

Matrices and Determinants
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Definition 2.4.1 A mairix is a collection, including possible repetitions, of real or complex
numbers arranged in a rectangular array.
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