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Section 2.3: Monte Carlo Simulation

@ With Empirical Probability, we perform an experiment many
times n and count the number of occurrences n, of an event

A

o The relative frequency of occurrence of event A is n,/n
o The frequency theory of probability asserts that the relative
frequency converges as n — oo

n
Pr(A) = lim =
n—oo N
@ Axiomatic Probability is a formal, set-theoretic approach
o Mathematically construct the sample space and calculate the
number of events A

@ The two are complementary!
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Galileo’s Dice

o If three fair dice are rolled, which sum is more likely, a 9 or a
107

@ There are 63 = 216 possible outcomes

Pr(X = 0) = 22_156 ~0.116 and  Pr(X = 10) = 22—176 —0.125
@ Program galileo calculates the probability of each possible
sum between 3 and 18
@ The drawback of Monte Carlo simulation is that it only
produces an estimate
@ Larger n does not guarantee a more accurate estimate
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Example 2.3.6

@ Frequency probability estimates converge slowly and
somewhat erratically
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@ You should always run a Monte Carlo simulation with multiple
initial seeds
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Random Variates

@ A Random Variate is an algorithmically generated realization
of a random variable

@ u = Random() generates a Uniform(0,1) random variate

@ How can we generate a Uniform(a, b) variate?

Generating a Uniform Random Variate

double Uniform(double a, double b) /* use a < b x/ {
return (a + (b - a) * Random());
}
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Equilikely Random Variates

@ Uniform(0, 1) random variates can also be used to generate an
Equilikely(a, b) random variate

O<uxl O<(b—a+llu<b—a+1
0<[(b—a+1l)u/<b-a
a<a+|(b—a+1l)u] <b

a<x<b

1ot

@ Specifically, x=a+ |[(b—a+ 1) u|

Generating an Equilikely Random Variate

long Equilikely(long a, long b) /* use a < b x/ {
return (a + (long) ((b - a + 1) * Random()));
}
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o Example 2.3.3 To generate a random variate x that simulates
rolling two fair dice and summing the resulting up faces, use

x = Equilikely(1l, 6) + Equilikely(1l, 6);

Note that this is not equivalent to
x = Equilikely(2, 12);

o Example 2.3.4 To select an element x at random from the
array a[0], a[1], ..., a[n — 1] use
i = Equilikely(0, n - 1);
x = alil;
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Equilikely(a,b) Geometry and Uniform(a,b+ 1) Composition
Our definition of
Equilikely(a,b) — a+ | ((b —a+ 1) - Random())]
could also be written using Uniform():
Equilikely(a,b) — |Uniform(a,b+1)]

which hints at the geometry happening with the pRNG values. . .
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Whew! You’re ready!

lga-monte-carlo-probs.pdf


https://cs.mcprogramming.com/static/sim/hr/54c4f281dd38a354/lga-monte-carlo-probs.pdf

