The Need for pRNG Streams

Recall the *Simple Inventory System* where demands for inventory items slowly depletes an initial maximum store of S. Periodically, inventory size l is evaluated and if l < s a restocking order is placed for S - l items.

Demands placed when l < 0 incur a penalty for the seller, so keeping l > 0 should be correlated with increased profits. But each order has an overhead cost diminishing profit — the optimal re-ordering policy (s) is not obvious in this case.

Additionally, we should consider non-instaneous delivery of ordered items, aka delivery lag.

We want to assess the difference in two different re-ordering policies s_A and s_B

The SIM will use a sequence of random values in two different stochastic processes in the simulation: demands and delivery lag.

```
$ cat SIM-AvsB.sh
set -e
for seed in $(cat SEEDS); do
    # collect policy specific results for a given random seed
    ./SIM A ${seed} >A-output-${seed}.out
    ./SIM B ${seed} >B-output-${seed}.out
done
$ ./ANALYZE.sh A-output-*.out -- B-output-*.out
n=500 mean=0.266 popstddev=1.530 ci90=(0.230,0.302)
```

Clearly, we detected a difference — but is this accurate? Does it really exist? Is the claimed confidence interval correct?

That was a trick question — the answer to both is **YES**. It's a statistical test of independent samples, the only "claim" the confidence interval asserts is that

If we ran the experiment, with a different set of seeds we expect the mean difference between the two scenarios to fall within (0.230, 0.320) about 90% of the time.

The **real** question is **qualatitive**:

Was the *experimental design* optimized to measure the **most accurate** difference in Policies s_A and s_B ?

No.

The re-order polices will move around the (simultation time) of reorders. The demand seen by s_A and s_B will be the same **up until one of the policies places an order**. The policy that orders first (suppose it is s_A) will use a draw from the pRNG (call it s_A) to determine delivery lag.

But x_k will produce a demand for s_B . And some time after this, s_B will use an x_m , m > k to determine a delivery lag — but most likely x_m will generate a demand arrival for s_A .

As the two policies **diverge** from their initial syncronized use of the pRNG sequence $x_0, x_1, ...$, they will see different patterns in both **demands** and **delivery lags**.

Our naive comparison of the two policies **is not flawed** — but we can perform a more sensitive experiment using **independent sequences of random values** for our two stochastic processes in the simulation: **demands**, and **delivery lags**.

In this way, the same demand profile is seen by both s_A and s_B experiments, and both experiments see the same sequence of random delivery lags.

This is an example of *Variance Reduction* in experimental design.

Problematic Solutions

i. Use different seeds for each stochastic element.

Problematic Solutions

- i. Use different seeds for each stochastic element. You may inadvertently choose two seeds that are one after another in the pRNG. Really, really, bad: you will induce serial dependence between the stochastic elements of your simulation that are supposed to be independent!
- ii. Use a different pRNG for each stocastic element, eg: choose different (a,m) pairs for several distinct Lehmer generators.

Problematic Solutions

- i. Use different seeds for each stochastic element.
 - You may inadvertently choose two seeds that are one after another in the pRNG. **Really**, **really**, **bad:** you **will induce serial dependence** between the stochastic elements of your simulation that are supposed to be independent!
- ii. Use a different pRNG for each stocastic element, eg: choose different (a,m) pairs for several distinct Lehmer generators.

Not much better, the quality of pRNGs is an assessment of their apparent randomness *internally* within their own generated values (for a particular seed). There have been **no studies** showing that two different pRNGs are random and independent of each other.

Why not? Because this is universally considered the wrong use of pRNGs in simulations.

Do the Right Thing: pRNG (sub) Streams

We can mathematically break of up the **whole sequence** of pRNG generated values into disjoint subsequences.

These are called *streams* of the pRNG.

How? Suppose you want to break up an (a, m) Lehmer generator into 5 distinct streams (indexed by j):

elements per streams =
$$e = \left\lfloor \frac{m}{5} \right\rfloor$$

Do the Right Thing: pRNG (sub) Streams

Given a seed x_0 , the j = 0 stream begins at $x_0 = x_{0,0}$. The j = 1 stream begins at

$$x_{1,0} = a^e x_0 \bmod m$$

the j = 2 stream begins at

$$x_{2,0} = a^{2e} x_0 \bmod m$$

and the jth stream begins at

$$x_{j,0} = a^{je} x_0 \bmod m$$

The "next value" function remains the same:

$$f(x_{i,i}) = ax_{i,i-1} \bmod m$$

Sequence

You just have *j* different states to store in memory.

A Better Approch to s_A vs s_B

```
$ cat SIM-AvsB-streams.sh
set -e
for seed in $(cat SEEDS); do
    # collect policy specific results for a given random seed
    # Use 2 streams, stream 0 for demands (-d), 1 for lags (-l)
    ./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out
    ./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out
done
$ ./ANALYZE.sh A-output-*.out -- B-output-*.out
n=500 mean=0.315 popstddev=0.352 ci90=(0.307,0.324)
```

Note the substantially better confidence interval due to variance reduction

— improved by a factor of 18.

A Paired Approch to s_A vs s_B (Ideal)

```
$ cat SIM-AvsB-streams-paired.sh
set. -e
for seed in $(cat SEEDS); do
    # collect policy specific results for a given random seed
    # Use 2 streams, stream 0 for demands (-d), 1 for lags (-1)
    ./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out
    ./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out
done
# a little more effort is required in ANALYZE-PAIRED.sh to pair
# same seed results together correctly
$ ./ANALYZE-PAIRED.sh "%s-output-%d.out" A B SEEDS
n=500 mean=0.353 popstddev=0.341 ci90=(0.328,0.378)
```

We treat the s_A vs s_B as a **placebo/treatment** or **pre/post** experimental design — the difference between same seed results are treated as the original data set δ_i .

By treating differences as accurately as possible in our statistical tests, we can again improve the result.

A Paired Approch to s_A vs s_B (Ideal)

```
$ cat SIM-AvsB-streams-paired.sh
set. -e
for seed in $(cat SEEDS); do
    # collect policy specific results for a given random seed
    # Use 2 streams, stream 0 for demands (-d), 1 for lags (-1)
    ./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out
    ./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out
done
# a little more effort is required in ANALYZE-PAIRED.sh to pair
# same seed results together correctly
$ ./ANALYZE-PAIRED.sh "%s-output-%d.out" A B SEEDS
n=500 mean=0.353 popstddev=0.341 ci90=(0.328,0.378)
```

Using a paired experimental design **isn't usually considered an example of** *variance reduction* — it's simply best practice in statistical analysis.

You aren't **always guaranteed** of a better result vs. a non-paired analysis — but you do have the most accurate result!