
The Need for pRNG Streams

Recall the Simple Inventory System where demands for inventory items slowly depletes an initial

maximum store of S. Periodically, inventory size l is evaluated and if l < s a restocking order is

placed for S− l items.

Demands placed when l < 0 incur a penalty for the seller, so keeping l > 0 should be correlated

with increased profits. But each order has an overhead cost diminishing profit — the optimal

re-ordering policy (s) is not obvious in this case.

Additionally, we should consider non-instaneous delivery of ordered items, aka delivery lag.

We want to assess the difference in two different re-ordering policies sA and sB

A Naive Approch to sA vs sB

The SIM will use a sequence of random values in two different stochastic processes in the

simulation: demands and delivery lag.

$ cat SIM-AvsB.sh

set -e

for seed in $(cat SEEDS) ; do

collect policy specific results for a given random seed

./SIM A ${seed} >A-output-${seed}.out

./SIM B ${seed} >B-output-${seed}.out

done

$./ANALYZE.sh A-output-*.out -- B-output-*.out

n=500 mean=0.266 popstddev=1.530 ci90=(0.230,0.302)

Clearly, we detected a difference — but is this accurate? Does it really exist? Is the claimed

confidence interval correct?

Discuss. . .

A Naive Approch to sA vs sB

That was a trick question — the answer to both is YES. It’s a statistical test of independent

samples, the only ”claim” the confidence interval asserts is that

If we ran the experiment, with a different set of seeds we expect the mean difference

between the two scenarios to fall within (0.230,0.320) about 90% of the time.

The real question is qualatitive:

WAS THE experimental design OPTIMIZED TO MEASURE THE MOST ACCURATE DIF-

FERENCE IN POLICIES sA AND sB?

A Naive Approch to sA vs sB

No.

The re-order polices will move around the (simultation time) of reorders. The demand seen by sA

and sB will be the same up until one of the policies places an order. The policy that orders first

(suppose it is sA) will use a draw from the pRNG (call it xk) to determine delivery lag.

But xk will produce a demand for sB. And some time after this, sB will use an xm, m > k to

determine a delivery lag — but most likely xm will generate a demand arrival for sA.

A Naive Approch to sA vs sB

As the two policies diverge from their initial syncronized use of the pRNG sequence x0,x1, . . .,
they will see different patterns in both demands and delivery lags.

Our naive comparison of the two policies is not flawed — but we can perform a more sensitive

experiment using independent sequences of random values for our two stochastic processes in

the simulation: demands, and delivery lags.

In this way, the same demand profile is seen by both sA and sB experiments, and both experiments

see the same sequence of random delivery lags.

This is an example of Variance Reduction in experimental design.

Problematic Solutions

i. Use different seeds for each stochastic element.

Problematic Solutions

i. Use different seeds for each stochastic element.

You may inadvertently choose two seeds that are one after another in the pRNG. Really,

really, bad: you will induce serial dependence between the stochastic elements of your

simulation that are supposed to be independent!

ii. Use a different pRNG for each stocastic element, eg: choose different (a,m) pairs for several

distinct Lehmer generators.

Problematic Solutions

i. Use different seeds for each stochastic element.

You may inadvertently choose two seeds that are one after another in the pRNG. Really,

really, bad: you will induce serial dependence between the stochastic elements of your

simulation that are supposed to be independent!

ii. Use a different pRNG for each stocastic element, eg: choose different (a,m) pairs for several

distinct Lehmer generators.

Not much better, the quality of pRNGs is an assessment of their apparent randomness

internally within their own generated values (for a particular seed). There have been no

studies showing that two different pRNGs are random and indpendent of each other.

Why not? Because this is universally considered the wrong use of pRNGs in simulations.

Do the Right Thing: pRNG (sub) Streams

We can mathematically break of up the whole sequence of pRNG generated values into disjoint

subsequences.

These are called streams of the pRNG.

How? Suppose you want to break up an (a,m) Lehmer generator into 5 distinct streams (indexed

by j):

elements per streams = e =
⌊m

5

⌋

Do the Right Thing: pRNG (sub) Streams

Given a seed x0, the j = 0 stream begins at x0 = x0,0. The j = 1 stream begins at

x1,0 = a ex0 mod m

the j = 2 stream begins at

x2,0 = a 2ex0 mod m

and the jth stream begins at

x j,0 = a jex0 mod m

The “next value” function remains the same:

f (x j,i) = ax j,i−1 mod m

x0

x j,0

by a je

Sequence

j

You just have j different states to store in memory.

A Better Approch to sA vs sB

$ cat SIM-AvsB-streams.sh

set -e

for seed in $(cat SEEDS) ; do

collect policy specific results for a given random seed

Use 2 streams, stream 0 for demands (-d), 1 for lags (-l)

./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out

./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out

done

$./ANALYZE.sh A-output-*.out -- B-output-*.out

n=500 mean=0.315 popstddev=0.352 ci90=(0.307,0.324)

Note the substantially better confidence interval due to variance reduction

— improved by a factor of 18.

A Paired Approch to sA vs sB (Ideal)

$ cat SIM-AvsB-streams-paired.sh

set -e

for seed in $(cat SEEDS) ; do

collect policy specific results for a given random seed

Use 2 streams, stream 0 for demands (-d), 1 for lags (-l)

./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out

./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out

done

a little more effort is required in ANALYZE-PAIRED.sh to pair

same seed results together correctly

$./ANALYZE-PAIRED.sh "%s-output-%d.out" A B SEEDS

n=500 mean=0.353 popstddev=0.341 ci90=(0.328,0.378)

We treat the sA vs sB as a placebo/treatment or pre/post experimental design — the difference

between same seed results are treated as the original data set δi.

By treating differences as accurately as possible in our statistical tests, we can again improve the

result.

A Paired Approch to sA vs sB (Ideal)

$ cat SIM-AvsB-streams-paired.sh

set -e

for seed in $(cat SEEDS) ; do

collect policy specific results for a given random seed

Use 2 streams, stream 0 for demands (-d), 1 for lags (-l)

./SIM A ${seed} --streams 2 -d 0 -l 1 >A-output-${seed}.out

./SIM B ${seed} --streams 2 -d 0 -l 1 >B-output-${seed}.out

done

a little more effort is required in ANALYZE-PAIRED.sh to pair

same seed results together correctly

$./ANALYZE-PAIRED.sh "%s-output-%d.out" A B SEEDS

n=500 mean=0.353 popstddev=0.341 ci90=(0.328,0.378)

Using a paired experimental design isn’t usually considered an example of variance reduction

— it’s simply best practice in statistical analysis.

You aren’t always guaranteed of a better result vs. a non-paired analysis — but you do have the

most accurate result!

