Next Event Simulations

October 25, 2025



We skip § 5.1.3—§ 5.2.3 in the text because they are either
i. explanation of, and anti-motivation for, writing complicated and fragile simulation code
(which upper level course students should NOT need to be convinced of.. .)
ii. or rather laborious explanations of straight-forward augmentation to our favorite example
systems (SSQ, SiS), which are actually easy fo do if you write a well-designed simulation to
begin with. ..

Instead we keep our eyes on the prize, focus on the design pattern used for all respectible discrete
event simulations.

Beware Algorithms 5.1.2 (SSQ) and 5.2.1 (SiS) they are unfortunate examples of HOW NOT TO
WRITE GOOD SIMULATIONS.

If you choose to write your next event simulations like this,

please don’t say you learned it from me and don’t expect full-credit for your future
work in this course.



» Next Event Simulation (NES) is a design pattern for writing efficient, structured,
and malleable DESs.

a. System State (5)

b. Events

c. Simulation Clock (#)
d. Event Scheduling

e. Event “List” (E)



> The System State (S) is a complete characterization of the system we are modeling. . .
which is not the same as a “snapshot of the simulation (which is usually larger, containing
more information).”

» The definition of S for a particular simulation evolves from the Conceptual through
Computational model:

Conceptual Abstract collection of values (or collections of values) and how they change
over time.

Specification Values of the Conceptual Model restated as variable names and their
numerical or collection type, along with the equations or algorithms
associated with them, and data from the real world that informs our models
and algorithms.

Computational The data types or data structures types used to hold specification variables
and the implementation of algorithms modifying them.

» The state of an SSQ is simply the number of jobs in the whole SSQ structure (queue and
service node).

> SiS state is simply the size of its inventory.



> Conventionally, Events are implemented as objects in the programming language, and all
events have data members representing their activation time (.at) and their event type

(.type).
> A System Event is an occurance that may change .S
» SSQ: job arrival, job completion
» SiS: demand, inventory review

» SiS with delivery delays?



> Conventionally, Events are implemented as objects in the programming language, and all
events have data members representing their activation time (.at) and their event type

(.type).
> A System Event is an occurance that may change .S
» SSQ: job arrival, job completion
» SiS: demand, inventory review

» SiS with delivery delays?
Events: demand, delivery, inventory review
State is inventory and inventory-on-order

> A Meta Event is a simulation specific occurance that cannot change S
» terminating the simulation,
» writing log or data files,

P statistical sampling of .§ or the simulation architecture run-time



» The Event “List” (‘£) holds Event objects, they are removed from E prioritized by smallest
activation time (the imminent event).

» In NES, the simulation clock ¢ lurches forward from activation time to activation time,
instead of progressing by a fixed increment “time step”.

» To Build an NES ...

i. Determine your system state (§)
(in the Conceptual and Specification Model)

ii. Identify your System Event types and how they interact with .§
(the Specification and Computational Models)

iii. Formalize your System Events in code, define and implement Meta Events as needed for
experimentation, data output.
(Computational Model)



(Real) Next Event Simulation

(Wordy Version)
1. Initialize simulation clock, simulation state, and event list
2. While event list is not empty (or until some simulation terminating event),
i. Remove the imminent event from the event list (smallest .ar)
ii. Advance the simulation clock to this imminent event’s activation time
iii. Process this event (depending on .type)
iv. Schedule the occurance of any future events spawned from this activated event

oy

(Mathy Version)
1. Initialize simulation clock ¢, state .S, and event list ‘£
2. While ‘E is not empty,

i. Find e,, € E with smallest activation time .at, e,, = argmin ‘E
e;.at
(THINK: “m” FOR IMMINENT)
ii. Advance the simulation clock (¢t < e,,.at)

iii. Process e,,, which may] add more events ¢; to E with e;.at > e,,.at =t

"More “likely” than “may.”



Let’s look at LGA-NES



	From the ``Danger Will Robinson'' Department
	From the ``Fundamentals'' Department
	From the ``Time on our Hands'' Department

