
Next Event Simulations

October 25, 2025



We skip § 5.1.3–§ 5.2.3 in the text because they are either

i. explanation of, and anti-motivation for, writing complicated and fragile simulation code

(which upper level course students should NOT need to be convinced of. . . )

ii. or rather laborious explanations of straight-forward augmentation to our favorite example

systems (SSQ, SiS), which are actually easy to do if you write a well-designed simulation to

begin with. . .

Instead we keep our eyes on the prize, focus on the design pattern used for all respectible discrete

event simulations.

Beware Algorithms 5.1.2 (SSQ) and 5.2.1 (SiS) they are unfortunate examples of HOW NOT TO

WRITE GOOD SIMULATIONS.

If you choose to write your next event simulations like this,

please don’t say you learned it from me and don’t expect full-credit for your future

work in this course.



◮ Next Event Simulation (NES) is a design pattern for writing efficient, structured,
and malleable DESs.

a. System State (S )

b. Events

c. Simulation Clock (t)

d. Event Scheduling

e. Event “List” (E)



◮ The System State (S ) is a complete characterization of the system we are modeling. . .

which is not the same as a “snapshot of the simulation (which is usually larger, containing

more information).”

◮ The definition of S for a particular simulation evolves from the Conceptual through

Computational model:

Conceptual Abstract collection of values (or collections of values) and how they change

over time.

Specification Values of the Conceptual Model restated as variable names and their

numerical or collection type, along with the equations or algorithms

associated with them, and data from the real world that informs our models

and algorithms.

Computational The data types or data structures types used to hold specification variables

and the implementation of algorithms modifying them.

◮ The state of an SSQ is simply the number of jobs in the whole SSQ structure (queue and

service node).

◮ SiS state is simply the size of its inventory.



◮ Conventionally, Events are implemented as objects in the programming language, and all

events have data members representing their activation time (.at) and their event type

(.type).

◮ A System Event is an occurance that may change S

◮ SSQ: job arrival, job completion

◮ SiS: demand, inventory review

◮ SiS with delivery delays?



◮ Conventionally, Events are implemented as objects in the programming language, and all

events have data members representing their activation time (.at) and their event type

(.type).

◮ A System Event is an occurance that may change S

◮ SSQ: job arrival, job completion

◮ SiS: demand, inventory review

◮ SiS with delivery delays?

Events: demand, delivery, inventory review

State is inventory and inventory-on-order

◮ A Meta Event is a simulation specific occurance that cannot change S

◮ terminating the simulation,

◮ writing log or data files,

◮ statistical sampling of S or the simulation architecture run-time



◮ The Event “List” (E) holds Event objects, they are removed from E prioritized by smallest

activation time (the imminent event).

◮ In NES, the simulation clock t lurches forward from activation time to activation time,

instead of progressing by a fixed increment “time step”.

◮ To Build an NES . . .

i. Determine your system state (S )

(in the Conceptual and Specification Model)

ii. Identify your System Event types and how they interact with S

(the Specification and Computational Models)

iii. Formalize your System Events in code, define and implement Meta Events as needed for

experimentation, data output.

(Computational Model)



(Real) Next Event Simulation

(Wordy Version)

1. Initialize simulation clock, simulation state, and event list
2. While event list is not empty (or until some simulation terminating event),

i. Remove the imminent event from the event list (smallest .at)

ii. Advance the simulation clock to this imminent event’s activation time

iii. Process this event (depending on .type)

iv. Schedule the occurance of any future events spawned from this activated event

(Mathy Version)

1. Initialize simulation clock t, state S , and event list E

2. While E is not empty,
i. Find em ∈ E with smallest activation time .at, em = argmin

ei.at
E

(THINK: “m” FOR IMMINENT)

ii. Advance the simulation clock (t← em.at)

iii. Process em, which may1 add more events ei to E with ei.at > em.at = t

1More “likely” than “may.”



Let’s look at LGA-NES


	From the ``Danger Will Robinson'' Department
	From the ``Fundamentals'' Department
	From the ``Time on our Hands'' Department

