Creating an LL(1) Parser

1. Analyze grammar G assuring that the Predict Sets of production rules grouped by common
LHS are pairwise disjoint.

2. Create an LLT, the parsing table.

3. Using LLTabularParsing generate a parse tree from a token stream providing tuples
(TOKENTYPE, srcValue) eg: (TYPE, int), (STRING, "RofL"), (REAL,3.14159).

The text’s algorithms for steps 1 and 2 are straight forward and reasonable.

Predict Sets

Predict Set The predict setforarule A — af is First(ap) | J Follow(A)

—_——
if af=*2i

peP | Computed By | Predict Set |

1 S — AMS | FirstSet(RHS) | b,m, n,p,s

2 A— BC FirstSet(RHS) | b

3 A>CM FirstSet(RHS) | m,n, p,s

4 B > bgh | FirstSet(RHS) | b

5 C — st FirstSet(RHS) | s

6 C — A FollowSet(LHS) | m, n, p

7 M —m FirstSet(RHS) | m

8 M —n FirstSet(RHS) | n

9 M —p FirstSet(RHS) | p

An LL(1) Parsing Table

LL(1) Parsing Table An LL(1) parsing table (LLT) has rows for the non-terminals of NV, columns for
the terminals of X and $.

Each cell identifies the production rule p € P to use in the next step of a derivation to
verify the correctness (syntax) of input symbols (tokens).

Look ma! we’re gonna be parsing soon!

Predict Sets

LL(1) Parsing Table

[# peP | Computed By [Predict Set]
1 S — AMS$ | FirstSer(RHS) | b,m n,p,s blg|h|m|n|p|s|t]|s
2 A— BC FirstSet(RHS) | b S 1 111111
3 A—-CM FirstSet(RHS) | m,n,p,s
4 B > bgh | FirstSet(RHS) | b A2 3/3|3]3
5 C — st FirstSet(RHS) | s M 71819
6 C—= A FollowSet(LHS) | m,n, p B 4
7 M—>m FirstSet(RHS) | m
8 M on FirstSet(RHS) | n c 61665
9 M—p FirstSet(RHS) | p

Operation: begin
STACK QUEUE PARSE TREE

The QUEUE is the input sequence of tokens.

Push the grammar starting symbol S onto a STACK.
Create the root node of the raw PARSE TREE,

make it the Current node in the tree.

ORORCRONG

Operation: begin
STACK QUEUE PARSE TREE

The QUEUE is the input sequence of tokens.

Push the grammar starting symbol S onto a STACK.

Create the root node of the raw PARSE TREE,

make it the Current node in the tree.

The stack top is the non-terminal S,

the front of the queue is token b,

Using the LLT table we look up Rule 1: S — A M §.
b h s

ORORCRONG

g m|in|p t]s
S |1 11011
A |2 313|133
M 71819
B |4
C 66|65

Operation: b predictsrule1 S — AM$
STACK QUEUE PARSE TREE

ORORCRONG

Pop the stack. Rule 1: S — A M $ is predicted.

Push an end of production marker (x) onto the stack,

push the RHS of the rule onto the stack from right to left,
add the LHS as the right-most child of the Current tree node,
make this new child the Current node of the tree.

ORORCRONG

Operation: b predictsrule1 S — AM$
PARSE TREE

The top of the stack is the non-terminal A,

the front of the queue is token b,

Using the LLT table we look up Rule2: A — BC.
b

s|t]$
1
3

g|h|m

1 1
2 3
7

0 W =3
© W =T

4

AW > »

6|/6|6|5

Operation: b predictsrule2 A — BC
PARSE TREE

(]
—
>
(2]
Fel
3]
[
m
[
m

CRERERORIRE
ORORCRONG

Pop the stack. Rule 2: A — B C s predicted.

Push an end of production marker (x) onto the stack,

push the RHS of the rule onto the stack from right to left,
add the LHS as the right-most child of the Current tree node,
make this new child the Current node of the tree.

Operation: b predictsrule2 A — BC
PARSE TREE

(]
—
>
(2]
Fel
3]
[
m
[
m

ORORCRONG

The top of the stack is the non-terminal B,

the front of the queue is token b,

Using the LLT table we look up Rule4: B — bgh.
b s $

g|h t

O L L O L E

1
2

1
3

N W =3
0 W =3
© W =T

4

AW > »

Operation: b predictsrule4 B — bgh
PARSE TREE

(]
—
>
o
Fe
3]
[
m
[
m

ORORCRONG

Pop the stack. Rule 2: B — b g h is predicted.

Push an end of production marker (x) onto the stack,

push the RHS of the rule onto the stack from right to left,
add the LHS as the right-most child of the Current tree node,
make this new child the Current node of the tree.

B OO L

Operation: b predictsrule4 B — bgh
PARSE TREE

(]
—
>
o
Fe
3]
[
m
[
m

ORORCRONG

B OO L

Finally! The top of the stack is a terminal (finally!) What to do?

Operation: b predictsrule4 B — bgh
PARSE TREE

(]
—
>
o
Fe
3]
[
m
[
m

ORORCRONG

The top of the stack is the terminal b,
the front of the queue is token b, they match!

B OO L

Operation: token b match (b)
STACK QUEUE PARSE TREE

The stack top is a terminal that matches the front of the queue (b).
Pop the stack, pull the token from the front of the queue;
add the token as the right-most child of the Current tree node.

O L LE OO L

Operation: token b match (b)
STACK QUEUE PARSE TREE

ONONCRO
-0

O L LE OO L

The stack top is a terminal that matches the front of the queue (g).

Operation: token g match (g)
PARSE TREE

OFEH O O [
00 0F

©
°eoo@

The stack top is a terminal that matches the front of the queue (g).
Pop the stack, pull the token from the front of the queue;
add the token as the right-most child of the Current tree node.

Operation: token g match (g)
STACK QUEUE PARSE TREE

SHEHOH O
5
°eoo@

The stack top is a terminal that matches the front of the queue (h).

(]
-
>
(2]
Fe
3]
[
m
[
m

O Ll OO

N0

Operation: token h match (h)
PARSE TREE

The stack top is a terminal that matches the front of the queue (h).
Pop the stack, pull the token from the front of the Queue;
add the token as the right-most child of the Current tree node.

Operation: token h match (h)
PARSE TREE

2
SRERERORIIRCE
(o]

A

(9]

ONO):

m

c

m

The top of the stack is the end of production marker.

Operation: end of B production
PARSE TREE

(]
—
>
(2]
Fe
3]
[
m
[
m

N0

SFEOE
8-

The top of the stack is the end of production marker,
pop the stack, and set the parent of Current as the new current node.
Current <— Current.parent

(]
—
>
(2]
Fe
3]
[
m
[
m

O Ll O

N0

Operation: end of B production
PARSE TREE

The top of the stack is the non-terminal C, the front of the queue is

A.

token m, Using the LLT table we look up Rule 6: C —
b t

g|h|m

n

S

$

1 1
2 3
7

4

AT >0

6

1
3
8

6

© W =T

1
3

Operation: mpredictsrule6 C — A
PARSE TREE

Pop the stack. Rule 6: C — A is predicted.

Push an end of production marker (x) onto the stack,

push the RHS of the rule onto the stack from right to left,
add the LHS as the right-most child of the Current tree node,
make this new child the Current node of the tree.

(]
—
>
(2]
Fel
3]
[
m
[
m

CSHRERORONE

Operation: mpredictsrule6 C — A
PARSE TREE

(]
—
>
(2]
Fel
3]
[
m
[
m

N0
)

O LEO O
)
©

The top of the stack is A! What to do?

Operation: A consumed from stack
STACK QUEUE PARSE TREE

& <>

O L O

The top of the stack is A.
Pop the stack,
place a A as the right-most child of the Current tree node.

—
>
Fel
3]
[
m
[
m

O[O OF

N0

Operation: A consumed from stack
PARSE TREE

The top of the stack is the end of production marker.

STACK QUEUE

O Ll ¢
N0

Operation: end of C production
PARSE TREE

The top of the stack is the end of production marker,
pop the stack, and set the parent of Current as the new current node.

Current <— Current.parent

Operation: end of C production
PARSE TREE

The top of the stack is the end of production marker.

Operation: end of A production
PARSE TREE

STACK QUEUE

O L [
N0

The top of the stack is the end of production marker,
pop the stack, and set the parent of Current as the new current node.

Current <— Current.parent

Operation: end of A production
STACK QUEUE PARSE TREE

The top of the stack is the non-terminal M, the front of the queue is
token m, Using the LLT table we look up Rule 7: M — m .
b h

g s|t]$
1
3

O L [
N0

m n

1 171
2 3|3
7.8

© W =T

4

AW >«

6|/6|6|5

STACK QUEUE

SEERORE
N0

Operation: mpredictsrule7 M — m
PARSE TREE

Pop the stack. Rule 7: M — m is predicted.

Push an end of production marker (x) onto the stack,

push the RHS of the rule onto the stack from right to left,
add the LHS as the right-most child of the Current tree node,
make this new child the Current node of the tree.

Operation: mpredictsrule7 M — m
PARSE TREE

The stack top is a terminal that matches the front of the queue (m).

Operation: token m match (m)
STACK QUEUE

PARSE TREE

O Lo

The stack top is a terminal that matches the front of the queue (m).
Pop the stack, pull the token from the front of the queue;
add the token as the right-most child of the Current tree node.

Operation: token m match (m)
STACK QUEUE

PARSE TREE

O Lo

The top of the stack is the end of production marker.

Operation: end of M production
STACK QUEUE PARSE TREE

<
<> ©
OLCD
(r0 O @D

OO G

The top of the stack is the end of production marker,
pop the stack, and set the parent of Current as the new current node.
Current <— Current.parent

Operation: end of M production
STACK QUEUE PARSE TREE

<
<> ©
OLCD
(r0 O @D

OO G

The top of the stack is the end of input grammar symbol ($).

Operation: token $ match ($)
STACK QUEUE PARSE TREE

<> <
Lo
CLCIACY,
(r0 O @D
OO G

The stack top $ matches the front of the queue.
Pop the stack, pull the $ from the front of the queue;
place a $ as the right-most child of the Current tree node.

Operation: token $ match ($)
STACK QUEUE PARSE TREE

<> <
Lo
CLCIACY,
(r0 O @D
OO G

The top of the stack is the end of production marker.

STACK QUEUE

Operation: end of S production
PARSE TREE

The top of the stack is the end of production marker,
pop the stack, and set the parent of Current as the new current node.
Current <— Current.parent

STACK QUEUE

Operation: end of S production
PARSE TREE

The stack is empty, Current is the root of the parse tree.
Below Current is the “raw” parse tree for the inputb g h m.
b g h mis a valid sentence of the grammar.

LL Parsing Verifies Input with Leftmost Derivations

Watch the same input being parsed, but his time we will keep track of the
derivational steps being performed.

Operation: begin
STACK QUEUE PARSE TREE

ORORCRONG

Operation: b predictsrule1 S — AM$

STACK QUEUE PARSE TREE
<,
<, O
<,

<& @

S=AMS

Operation: b predictsrule2 A — BC

STACK QUEUE PARSE TREE
<, <>
<, &
<> @ O
&

<>

S=AMS
S=BCMS$

Operation: b predictsrule4 B — bgh

S=bghCMS$

STACK QUEUE PARSE TREE

] & <D

o] & <>

<, <

<& @ ©

<> S=AMS$
S=BCMS$

Operation: token b match (b)

S=bghCMS$

STACK QUEUE PARSE TREE

o] & <D

<, <>

<& @ <

©

<> D

S=AMS$
S=BCMS$
<>

O L OO L

ONONG

Operation:

token g match (g)

PARSE TREE
<>
D
D
(=)
I,
S=AMS
S=BCMS

S=bghCM$

Operation: token h match (h)

STACK QUEUE PARSE TREE

<> @ Croo)

<D,

<> <

S

DI

<> S=AMS$
S=BCM$

S=bghCMS$

Operation: end of B production

STACK QUEUE PARSE TREE

. Croot)

<> <D,

<>

()

<> DI
S=AMS
S=BCM$

S=bghCMS$

Operation: mpredictsrule6 C — A

STACK QUEUE PARSE TREE

. Croot)

<> <D,

<> CaD

)@

DI

<> S=AMS$

S=BCM$

S=bghCMS$
S=bgh\M$

—
>
Fel
3]
[
m
[
m

O[O OF
N0

Operation: A consumed from stack

PARSE TREE
<>
(=) @
DI, D
S=AMS
S=BCMS

S=bghCMS$
S=bghM$

Operation: end of C production
PARSE TREE

S=AMS
S=BCM$
S=bghCMS$
S=bghM$

Operation: end of A production

PARSE TREE
) Croo)
<>
(2> (D
DI, D
S=AMS
S=BCMS

S=bghCMS$
S=bghM$

Operation: mpredictsrule7 M — m

PARSE TREE
Croo)
CsD
Ca) @D
ORCD
OIOIOIEY
S=AMS
S= BCMS$
S=bghCMS$
S=bghM$

S=bghm$

Operation: token m match (m)
STACK QUEUE

PARSE TREE

<> Croo)

CsD

<> (D @D

OROICY
OIOIOIEY

S=AMS
S= BCMS$
S=bghCMS$
S=bghM$

S=bghm$

Operation: end of M production

STACK QUEUE PARSE TREE
<>
<> (s
(2D 0
ONRCICY
OIOION
S=AMS$
S=BCMS$
S=bghCM$
S=bghM$

S=bghm$

STACK QUEUE

<>

Operation: token $ match ($)
PARSE TREE

S=AMS
S= BCMS$
S=bghCMS$
S=bghMS$
S=bghm$

STACK QUEUE

Operation: end of S production
PARSE TREE

S=AMS
As promised, thisisa S = BCM$
leftmost parse of the input S = bghCM$
sentence. S = bghM$
S=bghm$

Pseudo Code for LLT Parsing

lltableparse.pdf

https://cs.mcprogramming.com/static/comp/hr/f763f2703d7b9694/lltableparse.pdf

Example Fischer 5-2

Predict Sets

pcP ‘ Computed By | Predict Set |
1 S = ACS FirstSet(RHS) a,b,c,q,$
2 C—c FirstSet(RHS) c

3 C— A FollowSet(LHS) d, $

4 A — aBCd FirstSet(RHS) a

5 A— BQ FirstSet(RHS)|JFollowSet(LHS) | b, c, g, $

6 B— bB FirstSet(RHS) b

7 B —= A FollowSet(LHS) c,d, q $

8 0 —ygq FirstSet(RHS) q

9 Q0 — A FollowSet(LHS) c,$

Example Fischer 5-2

LL(1) Parsing Table Predict Sets

[# peP | Computed By | Predict Set |
a|blc|d|g]|Ss 1T S 5 ACS FirsiSet(RHS) a0, c g5

S 1 1 1 1 1 2 C —>c FirstSet(RHS) c

3 C = A FollowSet(LHS) d,$
A 4155 5195 4 A — aBCd FirstSet(RHS) a
C 213 3 5 A — BQ FirstSet(RHS)J FollowSet(LHS) b,c,q $

6 B — bB FirstSet(RHS) b
B 6 7 7 7 7 7 B — A FollowSet(LHYS) c,d, q$
Q 9 819 8 0 —q FirstSet(RHS) q

9 0 — A FollowSet(LHYS) c, $

STACK QUEUE

ONORCRORONO

Operation: begin
PARSE TREE

Q=A™

A2 O 0N O WN = H

©O© N WO =,

Operation: a predictsrule1 § — ACS$
PARSE TREE

(]
—
>
o
Fel
3]
[
m
[
m

ONORCRORONO

QA0

A2 O 0N O WN = H

©O© N WO =,

Operation: a predictsrule4 A — aBCd
PARSE TREE

(]
—
>
(2]
Fel
3]
[
m
[
m

O Lo [[1]
ONORCRORONO

QA0

A2 O 0N O WN = H

©O© N WO =,

Operation: token a match (a)
PARSE TREE

(]
-
>
(2]
Fe
3]
[
m
[
m

CRERERORERERE
ORORORONC

Q=A™

A2 O 0N O WN = H

©O© N WO =,

Operation: Db predictsrule6 B — b B
PARSE TREE

(]
—
>
o
Fe
3]
m

UEU

ORORORONC

L OO L

Rules

1 § = ACS$

2 C—>c

3 C—= A

4 A — aBCd

5 A— BQ

6 B— bB

7 B— A\

8 0 —g¢q

9 0 — A

alblcl|ld|lqgls$
IERERE 101
A|l4|5]|5 5|5
C 213 3
B 67777
Q 9 8|9

O Lo O

Operation: token b match (b)
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

(]
—
>
o
Fe

OO O

(9]
c
m
c
m

ORORORG

Operation: Db predictsrule6 B — b B
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

Operation: token b match (b)
PARSE TREE

ONONC

OO O

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

OO OO

ONONC

Operation: dpredictsrule7 B — A
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

OO OO

ONONC

Operation: A consumed from stack
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

Operation: end of B production
PARSE TREE

ONONC

O L OO0

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

ONONC

O L OO

Operation:

end of B production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d|q

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

(]
—
>
(2]
Fe

SRURERORERE

Operation: end of B production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

O L OO

ONONC

Operation: dpredictsrule3 C — A
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

(]
—
>
o
Fel

O Ll OO

Operation: A consumed from stack
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

(]
—
>
(2]
Fel

CEURERORE

Operation: end of C production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

Operation: token d match (d)
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

Operation:

end of A production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d|q

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

STACK QUEUE

O Lo L
N0

Operation: c predictsrule2 C — ¢
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

STACK QUEUE

O Lo

Operation: token c match (c)
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q

0 — A

b d| g

Q=A™

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

STACK QUEUE

<>

Operation: end of C production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

STACK QUEUE

<>

Operation: token $ match ($)
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d|q

Q=A™

AalplO O N OAWN 2| H#

1
5
3

6 77

©O© N WO =,

©O© NN O =0

STACK QUEUE

Operation: end of S production
PARSE TREE

Rules

S > ACS
C > c

C = A

A — aBCd
A — BQ
B — bB
B — A

0 —q
0 — A

b d| g

QA0

A2 O 0N O WN = H

1
5
3

6 77

©O© N WO =,

©O© NN O =0

