
Group Practice — make this language LL(1). . .

Rules

1 S → A B $

2 S → B C $

3 A → A x

4 A → x

5 B → y A B

6 B → h

7 C → x C y

8 C → p

p ∈ P Computed By Predict Set

1 S → A B $ FirstSet(RHS) x

2 S → B C $ FirstSet(RHS) h, y

3 A → A x FirstSet(RHS) x

4 A → x FirstSet(RHS) x

5 B → y A B FirstSet(RHS) y

6 B → h FirstSet(RHS) h

7 C → x C y FirstSet(RHS) x

8 C → p FirstSet(RHS) p

h p x y $

S 2 1 2

A ⋆

B 6 5

C 8 7

Group Practice — make this language LL(1). . .

Rules

1 S → A B $

2 S → B C $

3 A → A x

4 A → x

5 B → y A B

6 B → h

7 C → x C y

8 C → p

The language is not LL(1) due to the left recursion rule

A → A x

You might recall the reformatting equations from a previous lecture:

A → Aγβ

A → β
⇒

A → βR

R → γβR

| λ

(γ may be “empty,” recall lower Greek letters are (Σ+N)∗)

In this case γ = λ, since we must have a symbol for β.

The following refactoring of A will make this an LL(1) language:

A → x R

R → x R

| λ

Left Recursion Blemishes on LL(1) Parsing

Rules

1 S → A B $

2 S → B C $

3 A → A x

4 A → x

5 B → y A B

6 B → h

7 C → x C y

8 C → p

Having to avoid left-recursion is a considerable blemish on recursive

descent parsing — we want languages to be expressive: permitting an

idea to be communicated with a minimal syntax and without “structure

obfuscation.”

Imagine an LL(1) grammar for left associative arithmetic operations!

Yuck.

LR(0) Parsing

Rules

1 S → A B $

2 S → B C $

3 A → A x

4 A → x

5 B → y A B

6 B → h

7 C → x C y

8 C → p

h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8

5 sh-9 sh-10 sh-11

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3

8 sh-13

9 Reduce 8

10 sh-9 sh-10 sh-14

11 sh-15

12 Reduce 5

13 Reduce 1

14 sh-16

15 Reduce 2

16 Reduce 7

Operation: begin
TOP OF STACK FRONT OF DEQUE

The DEQUE is initialized with the input sequence of tokens;

the first token at the front (top) of the deque.

State 0 is pushed onto the STACK.

Operation: begin
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 0 and the front of the deque is token y,

Using the LR(0) table we look up the sh-3 action
h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4
...

Operation: shift y to stack, goto state 3
TOP OF STACK FRONT OF DEQUE

sh-3 action: push state 3 onto the stack,

labeled with the token y from the front of the deque.

Operation: shift y to stack, goto state 3
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 3 and the front of the deque is token x,

Using the LR(0) table we look up the sh-2 action
h p x y $ A B C

...

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8
...

Operation: shift x to stack, goto state 2
TOP OF STACK FRONT OF DEQUE

sh-2 action: push state 2 onto the stack,

labeled with the token x from the front of the deque.

Operation: shift x to stack, goto state 2
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 2 ,

the LR(0) table says we should reduce with rule 4.
h p x y $ A B C

...

2 Reduce 4

3 sh-2 sh-6
...

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

Reduce 4 action: reduce the top-most elements of the stack to be

children of rule 4’s RHS non-terminal.

Push this tree back onto the front of the deque.

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

How many elements came off the stack? It depends on the RHS of the reduction rule.

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

The deque has either tokens or tree roots as its elements;

depending on the implementation language this may be easy or tedious to accomplish.

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

Would anyone like to hazard a guess at what we do next?

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 3 and the front of the deque is non-terminal A,

Using the LR(0) table we look up the sh-6 action
h p x y $ A B C

...

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8
...

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

sh-6 action: push state 6 onto the stack,

labeled with the A tree from the front of the deque.

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

The stack always has “state” items in it,

these state items may have connected to them tokens or trees.

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 6 and the front of the deque is token x,

Using the LR(0) table we look up the sh-7 action
h p x y $ A B C

...

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3
...

Operation: shift x to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

sh-7 action: push state 7 onto the stack,

labeled with the element from the front of the deque.

Operation: shift x to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 7 ,

the LR(0) table action is Reduce 3
h p x y $ A B C

...

7 Reduce 3

8 sh-13
...

Operation: reduce by rule 3 A → A x
TOP OF STACK FRONT OF DEQUE

Reduce 3 action: reduce the top-most elements of the stack to be

children of rule 3’s RHS non-terminal.

Push this tree back onto the front of the deque.

Operation: reduce by rule 3 A → A x
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 3 and the front of the deque is non-terminal A,

Using the LR(0) table we look up the sh-6 action
h p x y $ A B C

...

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8
...

Operation: reduce by rule 3 A → A x
TOP OF STACK FRONT OF DEQUE

How will sh-6 change the data structures?

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

sh-6 action: push state 6 onto the stack,

labeled with the element from the front of the deque.

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 6 and the front of the deque is token h,

Using the LR(0) table we look up the sh-1 action
h p x y $ A B C

...

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3
...

Operation: shift h to stack, goto state 1
TOP OF STACK FRONT OF DEQUE

sh-1 action: push state 1 onto the stack,

labeled with the element from the front of the deque.

Operation: shift h to stack, goto state 1
TOP OF STACK FRONT OF DEQUE

The stack’s top is state 1 ,

the LR(0) table action is Reduce 6
h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4
...

Operation: reduce by rule 6 B → h
TOP OF STACK FRONT OF DEQUE

Be careful not to confuse the enumerated states on the stack with

reduction rule numbers stored in the LR(0) parsing table!

Reducing by rule 6 and ending up in state 6 was a coincidence!

Operation: reduce by rule 6 B → h
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3
...

Operation: shift B to stack, goto state 12
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

12 Reduce 5

13 Reduce 1
...

Operation: reduce by rule 5 B → y A B
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4
...

Operation: shift B to stack, goto state 5
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

5 sh-9 sh-10 sh-11

6 sh-1 sh-7 sh-3 sh-12
...

Operation: shift x to stack, goto state 10
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

10 sh-9 sh-10 sh-14

11 sh-15
...

Operation: shift p to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

9 Reduce 8

10 sh-9 sh-10 sh-14
...

Operation: reduce by rule 8 C → p
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

10 sh-9 sh-10 sh-14

11 sh-15
...

Operation: shift C to stack, goto state 14
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

14 sh-16

15 Reduce 2

16 Reduce 7

Operation: shift y to stack, goto state 16
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

14 sh-16

15 Reduce 2

16 Reduce 7

Operation: reduce by rule 7 C → x C y
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

5 sh-9 sh-10 sh-11

6 sh-1 sh-7 sh-3 sh-12
...

Operation: shift C to stack, goto state 11
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

11 sh-15

12 Reduce 5
...

Operation: shift $ to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

Wait a tick! How can there be TWO end-of-input markers?

This is a common trick in LR parsing, sometimes mentioned in texts as an input queue

“back-padded with ∞ $ markers”

The reason is that it makes the conditional logic of the LR algorithm easier to write and read,

and it has no deliterious effects on the outcome. It’s just a marker. :)

Operation: shift $ to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

h p x y $ A B C

...

14 sh-16

15 Reduce 2

16 Reduce 7

Operation: reduce by rule 2 S → B C $
TOP OF STACK FRONT OF DEQUE

SYNTAX ERROR?

h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4
...

Operation: reduce by rule 2 S → B C $
TOP OF STACK FRONT OF DEQUE

No, not in this special case: We are in state 0 with S at the front of the deque.

The LR(0) table doesn’t have a column for S!

We must notice that the front of the deque is the starting goal of the grammar!

A raw parse tree of a valid language sentence is at the front of the deque.

LR Parsing Verifies Input with Rightmost Derivations

Pseudo code for the LR “knitting” (parsing) algorithm is here and linked to from the schedule

page as well.

Watch the same input being parsed, but his time we will keep track of the

derivational steps being performed.

https://cs.mcprogramming.com/static/comp/hr/56e0a93e22f961bb/lr-knitting.pdf

Operation: begin
TOP OF STACK FRONT OF DEQUE

S ⇒ y x x h x p y $

Operation: shift y to stack, goto state 3
TOP OF STACK FRONT OF DEQUE

S ⇒ y x x h x p y $

Operation: shift x to stack, goto state 2
TOP OF STACK FRONT OF DEQUE

S ⇒ y x x h x p y $

Operation: reduce by rule 4 A → x
TOP OF STACK FRONT OF DEQUE

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift x to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: reduce by rule 3 A → A x
TOP OF STACK FRONT OF DEQUE

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift A to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift h to stack, goto state 1
TOP OF STACK FRONT OF DEQUE

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: reduce by rule 6 B → h
TOP OF STACK FRONT OF DEQUE

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift B to stack, goto state 12
TOP OF STACK FRONT OF DEQUE

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: reduce by rule 5 B → y A B
TOP OF STACK FRONT OF DEQUE

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift B to stack, goto state 5
TOP OF STACK FRONT OF DEQUE

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift x to stack, goto state 10
TOP OF STACK FRONT OF DEQUE

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift p to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: reduce by rule 8 C → p
TOP OF STACK FRONT OF DEQUE

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift C to stack, goto state 14
TOP OF STACK FRONT OF DEQUE

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift y to stack, goto state 16
TOP OF STACK FRONT OF DEQUE

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: reduce by rule 7 C → x C y
TOP OF STACK FRONT OF DEQUE

S ⇒ B C $

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $

S ⇒ y A x h x p y $

S ⇒ y x x h x p y $

Operation: shift C to stack, goto state 11
TOP OF STACK FRONT OF DEQUE

S ⇒ B C $

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $
...

Operation: shift $ to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

S ⇒ B C $

S ⇒ B x C y $

S ⇒ B x p y $

S ⇒ y A B x p y $

S ⇒ y A h x p y $
...

Operation: reduce by rule 2 S → B C $
TOP OF STACK FRONT OF DEQUE

S ⇒ B C $

S ⇒rm B x C y $

S ⇒rm B x p y $

S ⇒rm y A B x p y $

S ⇒rm y A h x p y $

S ⇒rm y A x h x p y $

S ⇒rm y x x h x p y $

From the initial goal rule downward, the rightmost non-terminal

was always reduced. So this was a rightmost derivation.

The “parse time ordering” of these operations are left to right but

from the bottom of the derivation up — from the top down

this is a rightmost parse!

LR, the “Canonical” Way to Parse

LR parsing1 is often referred to as “canonical”

parsing. Why?

1Technically, it’s LR(1) that is considered the canonical form.

LR, the “Canonical” Way to Parse

LR parsing1 is often referred to as “canonical”

parsing. Why?

canonical k

e

-nǒn’ǐ-k

e

l

adj. Of, relating to, or required by canon

law. adj. Of or appearing in the biblical

canon. adj. Conforming to orthodox or

well-established rules or patterns, as of

procedure.

orthodox ’ór-th

e

-däks

1a: conforming to established doctrine

especially in religion orthodox principles

the orthodox interpretation 1b:

conventional

IOW: this is “the way to parse.”

LR(k) (“shift-reduce parsing”) was shown by

Knuth (1965) to be capable of parsing any

deterministic context free grammar. Knuth’s

result was more academic than practical at the

time because it required huge data structures

in memory to form the parsing table.2

Subsequent research by others produced more

memory-practical algorithms such as SLR (what

we’ll focus on in this course) and LALR.

1Technically, it’s LR(1) that is considered the canonical form.
2Historical tidbit: you will notice languages developed before this result use endif markers — why?

They were using LL (recursive descent) parsing and needed to resolve the “dangling brackets problem” of if-then-else structures.

LR, the “Canonical” Way to Parse

Deterministic Context Free Grammar?

Similar to the difference between NFAs and

DFAs: to match a string with an NFA you’ll have

to remember multiple states at one time because

NFAs have λ-edges and permit multiple

same-character transitions away from a node

(state).

LR, the “Canonical” Way to Parse

Deterministic Context Free Grammar?

Deterministic FAs don’t have λ-edges and

permit only one transition per character from a

state. The “matching state” of DFAs can be

expressed in a simple table and can be stored as

a single value in an algorithm.

State a b c d e f

0 8 1 2

1 4 2 5

2 9 9

3 9

4 4 2

5 8 10 9

6 9 3

7 5

+ 8 0 7

+ 9 9 3

+ 10 0 6 7

LR, the “Canonical” Way to Parse

Deterministic Context Free Grammar?

Analogously, deterministic context free

grammars can be parsed by remembering only

one state throughout the parsing algorithm.

Our stack in the shift-reduce algorithm

remembers a history of states we will return to,

but the algorithm itself is in only one state at a

time.

It is the state at the top of the stack.

h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8

5 sh-9 sh-10 sh-11

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3

8 sh-13

9 Reduce 8

10 sh-9 sh-10 sh-14

11 sh-15

12 Reduce 5

13 Reduce 1

14 sh-16

15 Reduce 2

16 Reduce 7

LR, the “Canonical” Way to Parse

Deterministic Context Free Grammar?

Notice how each cell of the LR parsing table has

only one action to be performed?

sh-X shift input to stack under parse

state X

Reduce-Y “reduce” the top elements of the

stack with production rule Y , push

the resulting tree back onto the

input deque

None of the cells contain entries like

sh-2 AND sh-8 or sh-6 AND Reduce 3 .

h p x y $ A B C

0 sh-1 sh-2 sh-3 sh-4 sh-5

1 Reduce 6

2 Reduce 4

3 sh-2 sh-6

4 sh-1 sh-7 sh-3 sh-8

5 sh-9 sh-10 sh-11

6 sh-1 sh-7 sh-3 sh-12

7 Reduce 3

8 sh-13

9 Reduce 8

10 sh-9 sh-10 sh-14

11 sh-15

12 Reduce 5

13 Reduce 1

14 sh-16

15 Reduce 2

16 Reduce 7

LR, the “Canonical” Way to Parse

LR parsing runtime memory complexity is on the

order of source input length.

Unlike LL parsing, shift-reduce (canonical, LR)

parsing defers production rule decisions until

all of the RHS has been seen.

This grammar highlights how LR parsing defers

the choice of production rules until all of a RHS is

satisfied:

Rules

1 S → x A $

2 A → x A

3 A → x B

4 A → x C

5 B → y y g

6 C → y y k

Not surprisingly, we’ll see the algorithm consume

all of the input before encountering a g or k and

“deciding” which of the A production rules to use.

Operation: begin
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift x to stack, goto state 1
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift x to stack, goto state 2
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift x to stack, goto state 2
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift y to stack, goto state 4
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift y to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift k to stack, goto state 11
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: reduce by rule 6 C → y y k
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift C to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: reduce by rule 4 A → x C
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift A to stack, goto state 5
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: reduce by rule 2 A → x A
TOP OF STACK FRONT OF DEQUE

Operation: shift A to stack, goto state 3
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: shift $ to stack, goto state 8
TOP OF STACK FRONT OF DEQUE

g k x y $ A B C

0 sh-1

1 sh-2 sh-3

2 sh-2 sh-4 sh-5 sh-6 sh-7

3 sh-8

4 sh-9

5 Reduce 2

6 Reduce 3

7 Reduce 4

8 Reduce 1

9 sh-10 sh-11

10 Reduce 5

11 Reduce 6

Operation: reduce by rule 1 S → x A $
TOP OF STACK FRONT OF DEQUE

