Group Practice - make this language LL(1)...

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A x$
4	$A \rightarrow x$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

\# $\quad p \in P$				Computed By					Predict Set
$1 \quad S \rightarrow A B \$$				FirstSet (RHS)				x	x
$2 \quad S \rightarrow B C \$$				FirstSet (RHS)					h, y
$3 A \rightarrow A x$				FirstSet (RHS)				X	x
$4 \quad A \rightarrow x$				FirstSet (RHS)					x
$5 B \rightarrow y A B$				FirstSet (RHS)					Y
$6 \quad B \rightarrow h$				FirstSet (RHS)				h	h
$7 \quad C \rightarrow x C y$				FirstSet (RHS)				x	x
$8 \quad C \rightarrow p$				FirstSet (RHS)					p
			h	p	x	Y	\$		
		S	2		1	2			
		A			*				
		B	6			5			
		C		8	7				

Group Practice - make this language LL(1)...

The language is not LL(1) due to the left recursion rule

$$
A \rightarrow A x
$$

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A x$
4	$A \rightarrow x$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

You might recall the reformatting equations from a previous lecture:

$$
\begin{aligned}
& A \rightarrow A \gamma \beta \\
& A \rightarrow \beta
\end{aligned} \rightarrow \begin{aligned}
& A \rightarrow \beta R \\
& R \rightarrow \gamma \beta R \\
& \\
&
\end{aligned}
$$

(γ may be "empty," recall lower Greek letters are $(\Sigma+N) *$)
In this case $\gamma=\lambda$, since we must have a symbol for β.
The following refactoring of A will make this an $\operatorname{LL}(1)$ language:

$$
\begin{array}{ccc}
A & \rightarrow & x R \\
R & \rightarrow & x R \\
& \mid & \lambda
\end{array}
$$

Left Recursion Blemishes on LL(1) Parsing

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A x$
4	$A \rightarrow x$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

Having to avoid left-recursion is a considerable blemish on recursive descent parsing - we want languages to be expressive: permitting an idea to be communicated with a minimal syntax and without "structure obfuscation."

Imagine an $\mathrm{LL}(1)$ grammar for left associative arithmetic operations! Yuck.

LR(0) Parsing

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A x$
4	$A \rightarrow x$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
5		sh-9	sh-10					sh-11
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
8					sh-13			
9	Reduce 8							
10		sh-9	sh-10					sh-14
11					sh-15			
12	Reduce 5							
13	Reduce 1							
14				sh-16				
15	Reduce 2							
16	Reduce 7							

Operation: begin

The Deque is initialized with the input sequence of tokens; the first token at the front (top) of the deque. State 0 is pushed onto the Stack.

Operation: begin Top of Stack Front of Deque

The stack's top is state 0 and the front of the deque is token y , Using the LR(0) table we look up the sh-3 action

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
:								

Operation: shift y to stack, goto state 3
Top of Stack Front of Deque

sh-3 action: push state 3 onto the stack, labeled with the token y from the front of the deque.

Operation: shift y to stack, goto state 3
Top of Stack Front of Deque

The stack's top is state 3 and the front of the deque is token x , Using the LR(0) table we look up the sh-2 action

	h	p	x	y	$\$$	A	B	C
\vdots								
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
\vdots								

Operation: shift x to stack, goto state 2
Top of Stack Front of Deque

sh-2 action: push state 2 onto the stack, labeled with the token x from the front of the deque.

Operation: shift x to stack, goto state 2
Top of Stack Front of Deque

The stack's top is state 2 , the $\mathrm{LR}(0)$ table says we should reduce with rule 4.

	h	p	x	y	$\$$	A	B	C	
\vdots									
2	Reduce 4								
3			sh-2			sh-6			
\vdots									

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack, Front of Deque

Reduce 4 action: reduce the top-most elements of the stack to be children of rule 4's RHS non-terminal. Push this tree back onto the front of the deque.

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack Front of Deque

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack Front of Deque

The deque has either tokens or tree roots as its elements; depending on the implementation language this may be easy or tedious to accomplish.

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack Front of Deque

Would anyone like to hazard a guess at what we do next?

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack Front of Deque

The stack's top is state 3 and the front of the deque is non-terminal A, Using the LR(0) table we look up the sh-6 action

	h	p	x	y	$\$$	A	B	C
\vdots								
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
\vdots								

Operation: shift A to stack, goto state 6 Top of Stack Front of Deque

sh-6 action: push state 6 onto the stack, labeled with the A tree from the front of the deque.

Operation: shift A to stack, goto state 6
Top of Stack, Front of Deque

The stack always has "state" items in it, these state items may have connected to them tokens or trees.

Operation: shift A to stack, goto state 6
Top of Stack Front of Deque

The stack's top is state 6 and the front of the deque is token x , Using the LR(0) table we look up the sh-7 action

	h	p	x	y	$\$$	A	B	C
\vdots								
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
\vdots								

Operation: shift x to stack, goto state 7
Top of Stack Front of Deque

sh-7 action: push state 7 onto the stack, labeled with the element from the front of the deque.

Operation: shift x to stack, goto state 7
Top of Stack Front of Deque

The stack's top is state 7 ,
the $\mathrm{LR}(0)$ table action is Reduce 3

Operation: reduce by rule $3 A \rightarrow A x$
Top of Stack, Front of Deque

Reduce 3 action: reduce the top-most elements of the stack to be children of rule 3's RHS non-terminal. Push this tree back onto the front of the deque.

Operation: reduce by rule $3 A \rightarrow A x$
Top of Stack Front of Deque

The stack's top is state 3 and the front of the deque is non-terminal A, Using the LR(0) table we look up the sh-6 action

	h	p	x	y	$\$$	A	B	C
\vdots								
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
\vdots								

Operation: reduce by rule $3 A \rightarrow A x$ Top of Stack Front of Deque

How will sh-6 change the data structures?

Operation: shift A to stack, goto state 6 Top of Stack Front of Deque

sh-6 action: push state 6 onto the stack, labeled with the element from the front of the deque.

Operation: shift A to stack, goto state 6
Top of Stack Front of Deque

The stack's top is state 6 and the front of the deque is token h, Using the LR(0) table we look up the sh-1 action

	h	p	x	y	$\$$	A	B	C
\vdots								
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
\vdots								

Operation: shift h to stack, goto state 1
Top of Stack Front of Deque

sh-1 action: push state 1 onto the stack, labeled with the element from the front of the deque.

Operation: shift h to stack, goto state 1
Top of Stack Front of Deque

The stack's top is state 1 , the $\operatorname{LR}(0)$ table action is Reduce 6

	h	p	x	y	$\$$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
\vdots								

Operation: reduce by rule $6 B \rightarrow h$
Top of Stack, Front of Deque
 y \$

Be careful not to confuse the enumerated states on the stack with reduction rule numbers stored in the $\mathrm{LR}(0)$ parsing table! Reducing by rule 6 and ending up in state 6 was a coincidence!

Operation: reduce by rule $6 B \rightarrow h$ Top of Stack, Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
\vdots								

Operation: shift B to stack, goto state 12
Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
12	\vdots							
13	Reduce 5							
Reduce 1								

Operation: reduce by rule $5 B \rightarrow y A B$ Top of Stack Front of Deque

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
\vdots								

Operation: shift B to stack, goto state 5 Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
5		sh-9	sh-10					sh-11
6	sh-1		sh-7	sh-3			sh-12	
\vdots								

Operation: shift x to stack, goto state 10 Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
10		sh-9	sh-10					sh-14
11					sh-15			
\vdots								

Operation: shift p to stack, goto state 9 Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
9	Reduce 8							
10		sh-9	sh-10					sh-14
\vdots								

Operation: reduce by rule $8 C \rightarrow p$
Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
10		sh-9	sh-10					sh-14
11					sh-15			
\vdots								

Operation: shift C to stack, goto state 14
Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
14				sh-16				
15		Reduce 2						
16	Reduce 7							

Operation: shift y to stack, goto state 16 Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
14				sh-16				
15		Reduce 2						
16	Reduce 7							

Operation: reduce by rule $7 C \rightarrow x C y$ Top of Stack Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
5		sh-9	sh-10					sh-11
6	sh-1		sh-7	sh-3			sh-12	
\vdots								

Operation: shift C to stack, goto state 11 Top of Stack, Front of Deque

	h	p	x	y	$\$$	A	B	C
\vdots								
11					sh-15			
12		\vdots						
Reduce 5								

Operation: shift \$ to stack, goto state 15 Top of Stack Front of Deque

Wait a tick! How can there be TWO end-of-input markers?
This is a common trick in LR parsing, sometimes mentioned in texts as an input queue "back-padded with ∞ \$ markers"
The reason is that it makes the conditional logic of the LR algorithm easier to write and read, and it has no deliterious effects on the outcome. It's just a marker. :)

Operation: shift \$ to stack, goto state 15 Top of Stack Front of Deque

Operation: reduce by rule $2 S \rightarrow B C \$$ Top of Stack Front of Deque

Syntax Error?

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
!								

Operation: reduce by rule $2 S \rightarrow B C \$$ Top of Stack Front of Deque

No, not in this special case: We are in state 0 with S at the front of the deque.
The $\operatorname{LR}(0)$ table doesn't have a column for S ! We must notice that the front of the deque is the starting goal of the grammar! A raw parse tree of a valid language sentence is at the front of the deque.

LR Parsing Verifies Input with Rightmost Derivations

Pseudo code for the LR "knitting" (parsing) algorithm is here and linked to from the schedule page as well.

Watch the same input being parsed, but his time we will keep track of the derivational steps being performed.

Operation: begin
Top of Stack Front of Deque

$$
S \Rightarrow \mathbf{I} x x \operatorname{ch} x p y \$
$$

Operation: shift y to stack, goto state 3
Top of Stack, Front of Deque

$$
S \Rightarrow y \| x x h x p y \$
$$

Operation: shift x to stack, goto state 2
Top of Stack, Front of Deque

$$
S \Rightarrow y x \| x h x p y \$
$$

Operation: reduce by rule $4 A \rightarrow x$
Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow y \mathbf{I} x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift A to stack, goto state 6
Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow y A \mathbf{x h x p y \$} \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift x to stack, goto state 7
Top of Stack Front of Deque
0

6
7

$$
\begin{aligned}
& S \Rightarrow y A x \ h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: reduce by rule $3 A \rightarrow A x$
Top of Stack, Front of Deque

$$
\begin{aligned}
& S \Rightarrow y \| A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift A to stack, goto state 6 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow y A \mathbf{l} x \mathrm{xy} \mathrm{y} \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift h to stack, goto state 1
Top of Stack Front of Deque

$S \Rightarrow y A h \mathbf{x p y} \$$
$S \Rightarrow y A x h x p y \$$
$S \Rightarrow y x x h x p y \$$

Operation: reduce by rule $6 B \rightarrow h$
Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow y A \backslash B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift B to stack, goto state 12
Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow y A B \mathbf{l} x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: reduce by rule $5 B \rightarrow y A B$ Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow \text { I } x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift B to stack, goto state 5
Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B \mathbf{I} x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift x to stack, goto state 10 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B x \mathbf{l} y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift p to stack, goto state 9 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B x p \mathbf{l} y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: reduce by rule $8 C \rightarrow p$
Top of Stack, Front of Deque

$$
\begin{aligned}
& S \Rightarrow B x \backslash C y \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift C to stack, goto state 14 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B x C \mathbf{l} y \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift y to stack, goto state 16 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B x C y \| \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: reduce by rule $7 C \rightarrow x C y$ Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B \mathbf{C} \$ \\
& S \Rightarrow B x C y \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$ \\
& S \Rightarrow y A x h x p y \$ \\
& S \Rightarrow y x x h x p y \$
\end{aligned}
$$

Operation: shift C to stack, goto state 11 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B C \backslash \$ \\
& S \Rightarrow B x C y \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$
\end{aligned}
$$

Operation: shift \$ to stack, goto state 15 Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B C \$ \mathbf{l} \\
& S \Rightarrow B x C y \$ \\
& S \Rightarrow B x p y \$ \\
& S \Rightarrow y A B x p y \$ \\
& S \Rightarrow y A h x p y \$
\end{aligned}
$$

Operation: reduce by rule $2 S \rightarrow B C \$$ Top of Stack Front of Deque

$$
\begin{aligned}
& S \Rightarrow B C \$ \\
& S \Rightarrow_{r m} B x C y \$ \\
& S \Rightarrow_{r m} B x p y \$ \\
& S \Rightarrow_{r m} y A B x p y \$ \\
& S \Rightarrow_{r m} y A h x p y \$ \\
& S \Rightarrow_{r m} y A x h x p y \$ \\
& S \Rightarrow_{r m} y x x h x p y \$
\end{aligned}
$$

From the initial goal rule downward, the rightmost non-terminal was always reduced. So this was a rightmost derivation. The "parse time ordering" of these operations are left to right but from the bottom of the derivation up - from the top down this is a rightmost parse!

LR, the "Canonical" Way to Parse

LR parsing ${ }^{1}$ is often referred to as "canonical" parsing. Why?

LR, the "Canonical" Way to Parse

LR parsing ${ }^{1}$ is often referred to as "canonical" parsing. Why?
canonical kə-nǒn'l'-kəl
adj. Of, relating to, or required by canon law. adj. Of or appearing in the biblical canon. adj. Conforming to orthodox or well-established rules or patterns, as of procedure.
orthodox 'ór-thə-däks
1a: conforming to established doctrine especially in religion orthodox principles the orthodox interpretation 1b: conventional

IOW: this is "the way to parse."
LR(k) ("shift-reduce parsing") was shown by Knuth (1965) to be capable of parsing any deterministic context free grammar. Knuth's result was more academic than practical at the time because it required huge data structures in memory to form the parsing table. ${ }^{2}$

Subsequent research by others produced more memory-practical algorithms such as SLR (what we'll focus on in this course) and LALR.

LR, the "Canonical" Way to Parse

Deterministic Context Free Grammar?
Similar to the difference between NFAs and
DFAs: to match a string with an NFA you'll have to remember multiple states at one time because NFAs have λ-edges and permit multiple same-character transitions away from a node (state).

LR, the "Canonical" Way to Parse

Deterministic Context Free Grammar?

Deterministic FAs don't have λ-edges and permit only one transition per character from a state. The "matching state" of DFAs can be expressed in a simple table and can be stored as a single value in an algorithm.

State	a	b	c	d	e	f
0		8	1	2		
1			4	2	5	
2		9				9
3		9				
4			4	2		
5	8	10				9
6	9			3		
7					5	
+8	0				7	
+9				9	3	
+10	0		6		7	

LR, the "Canonical" Way to Parse

Deterministic Context Free Grammar?

Analogously, deterministic context free grammars can be parsed by remembering only one state throughout the parsing algorithm.

Our stack in the shift-reduce algorithm remembers a history of states we will return to, but the algorithm itself is in only one state at a time.

It is the state at the top of the stack.

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
5		sh-9	sh-10					sh-11
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
8					sh-13			
9	Reduce 8							
10		sh-9	sh-10					sh-14
11					sh-15			
12	Reduce 5							
13	Reduce 1							
14				sh-16				
15	Reduce 2							
16	Reduce 7							

LR, the "Canonical" Way to Parse

Deterministic Context Free Grammar?
Notice how each cell of the LR parsing table has only one action to be performed?
sh-X shift input to stack under parse state X

Reduce-Y "reduce" the top elements of the stack with production rule Y, push the resulting tree back onto the input deque

None of the cells contain entries like
sh-2 AND sh-8 or sh-6 AND Reduce 3.

	h	p	x	y	\$	A	B	C
0	sh-1		sh-2	sh-3		sh-4	sh-5	
1	Reduce 6							
2	Reduce 4							
3			sh-2			sh-6		
4	sh-1		sh-7	sh-3			sh-8	
5		sh-9	sh-10					sh-11
6	sh-1		sh-7	sh-3			sh-12	
7	Reduce 3							
8					sh-13			
9	Reduce 8							
10		sh-9	sh-10					sh-14
11					sh-15			
12	Reduce 5							
13	Reduce 1							
14				sh-16				
15	Reduce 2							
16	Reduce 7							

LR, the "Canonical" Way to Parse

This grammar highlights how LR parsing defers the choice of production rules until all of a RHS is satisfied:

LR parsing runtime memory complexity is on the order of source input length.

Unlike LL parsing, shift-reduce (canonical, LR) parsing defers production rule decisions until all of the RHS has been seen.

$$
\begin{array}{cl}
\# & \text { Rules } \\
\hline 1 & S \rightarrow x A \$ \\
2 & A \rightarrow x A \\
3 & A \rightarrow x B \\
4 & A \rightarrow x C \\
5 & B \rightarrow y y g \\
6 & C \rightarrow y y k
\end{array}
$$

Not surprisingly, we'll see the algorithm consume all of the input before encountering a g or k and "deciding" which of the A production rules to use.

Operation: begin Top of Stack Front of Deque

$$
0, x, x \rightarrow y, x
$$

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift x to stack, goto state 1 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift x to stack, goto state 2 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift x to stack, goto state 2 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift y to stack, goto state 4 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift y to stack, goto state 9 Top of Stack Front of Deque
\square

k
\$

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift k to stack, goto state 11 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: reduce by rule $6 C \rightarrow$ y k Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift C to stack, goto state 7
Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: reduce by rule $4 A \rightarrow x C$

 Top of Stack Front of Deque

	g	k	x	y	\$	A	B	C
0			sh-1					
1			sh-2			sh-3		
2			sh-2	sh-4		sh-5	sh-6	sh-7
3					sh-8			
4				sh-9				
5	Reduce 2							
6	Reduce 3							
7	Reduce 4							
8	Reduce 1							
9	sh-10	sh-11						
10	Reduce 5							
11	Reduce 6							

Operation: shift A to stack, goto state 5 Top of Stack Front of Deque

Operation: reduce by rule $2 A \rightarrow x A$
Top of Stack, Front of Deque

Operation: shift A to stack, goto state 3
Top of Stack Front of Deque

Operation: shift \$ to stack, goto state 8 Top of Stack Front of Deque

Operation: reduce by rule $1 S \rightarrow x A \$$ Top of Stack Front of Deque

