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Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer

memory?

An n×n Boolean matrix for λs, and a

state× c∈ Σ “transition table” whose cells

contain what?

ii. While matching a character sequence to an

NFA, what type of data structure must be used

to remember where in the NFA we are?

iii. Can we represent a DFA more efficiently?

iv. What data structure is required to remember

DFA matching state?



Why Don’t We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools

(in fact, all of which you will build in this course!). . .

c++comment-automated.pdf

https://cs.mcprogramming.com/static/comp/hr/58da6ee3f6b3adf2/c++comment-automated.pdf


NFA to DFA Algorithm
initialization

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure NFAtoDFA ( N an NFA )

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N



NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure NFAtoDFA ( N an NFA )

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

B← FollowLamda( {i} )



NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure FollowLambda( S a ⊆ of NFA N states )

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach ( state t ∈ S ) push t onto M

while ( |M|> 0 ) do (

t← pop M

foreach ( λ transition from t to state q ) do (

if ( q /∈ S ) then (

add q to S

push q onto M

)

)

)

return S



NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <{0,4}>
B = {0,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure NFAtoDFA ( N an NFA )

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

B← FollowLamda( {i} )

initialize row T [B][·]
mark T [B][·] as the starting state of D

if ( A
⋂

B 6= /0 ) then (

mark T [B][·] as an accepting state of D

)

push B onto L



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
FollowChar

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

/0← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure FollowChar ( S a ⊆ of NFA N states , c ∈ Σ )

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach ( state t ∈ S ) do (

foreach ( c transition from t to state q ) do (

add q to F

)

)

return F



NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

/0← FollowLambda( /0)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure FollowLambda( S a ⊆ of NFA N states )

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach ( state t ∈ S ) push t onto M

while ( |M|> 0 ) do (

t← pop M

foreach ( λ transition from t to state q ) do (

if ( q /∈ S ) then (

add q to S

push q onto M

)

)

)

return S



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

R = /0

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = b

{10}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

procedure FollowChar ( S a ⊆ of NFA N states , c ∈ Σ )

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach ( state t ∈ S ) do (

foreach ( c transition from t to state q ) do (

add q to F

)

)

return F



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = b

{10}← FollowLambda({10})

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

procedure FollowLambda( S a ⊆ of NFA N states )

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach ( state t ∈ S ) push t onto M

while ( |M|> 0 ) do (

t← pop M

foreach ( λ transition from t to state q ) do (

if ( q /∈ S ) then (

add q to S

push q onto M

)

)

)

return S



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = b

R = {10}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = c

{1,4}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

procedure FollowChar ( S a ⊆ of NFA N states , c ∈ Σ )

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach ( state t ∈ S ) do (

foreach ( c transition from t to state q ) do (

add q to F

)

)

return F



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = c

{1,4}← FollowLambda({1,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

procedure FollowLambda( S a ⊆ of NFA N states )

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach ( state t ∈ S ) push t onto M

while ( |M|> 0 ) do (

t← pop M

foreach ( λ transition from t to state q ) do (

if ( q /∈ S ) then (

add q to S

push q onto M

)

)

)

return S



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = c

R = {1,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = d

{5}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

procedure FollowChar ( S a ⊆ of NFA N states , c ∈ Σ )

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach ( state t ∈ S ) do (

foreach ( c transition from t to state q ) do (

add q to F

)

)

return F



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = d

{5,6,8}← FollowLambda({5})

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

procedure FollowLambda( S a ⊆ of NFA N states )

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach ( state t ∈ S ) push t onto M

while ( |M|> 0 ) do (

t← pop M

foreach ( λ transition from t to state q ) do (

if ( q /∈ S ) then (

add q to S

push q onto M

)

)

)

return S



NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{5,6,8},{1,4},{10}>
S = {0,4}
d = d

R = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8}

N Y {10}

N N {1,4}

N N {5,6,8}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
characters e and f yield /0

A = {9,10}
i = 0

Stack L <{5,6,8},{1,4},{10}>
S = {0,4}
c = f

R = /0

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{9},{1,4},{10}>
S = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{8},{1,4},{10}>
S = {9}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = c

R = {4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = d

R = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4} {5,6,8}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = e

R = {2,6}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4} {5,6,8} {2,6}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

N N {2,6}
repeat (

S← pop L

foreach ( c ∈ Σ ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if ( |R|> 0 AND T [R][·] does not exist ) then (

initialize row T [R][·]
if ( A

⋂
R 6= /0 ) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while ( |L|> 0 )



NFA to DFA Algorithm

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10} {0,4} /0 /0 /0 {1} /0

N N {1,4} /0 /0 {4} {5,6,8} {2,6} /0

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4} /0 /0 {4} {5,6,8} /0 /0

N N {2,6} {10} {3,10} /0 /0 /0 {9}

N Y {3,10} {0,4} /0 {7} /0 {1} /0

N N {7} {9} /0 /0 {8} /0 /0

N N {1} /0 /0 /0 /0 {2,6} /0

When L is empty, the table T holds a DFA derived from the

original NFA.



Original NFA

Equivilant DFA


