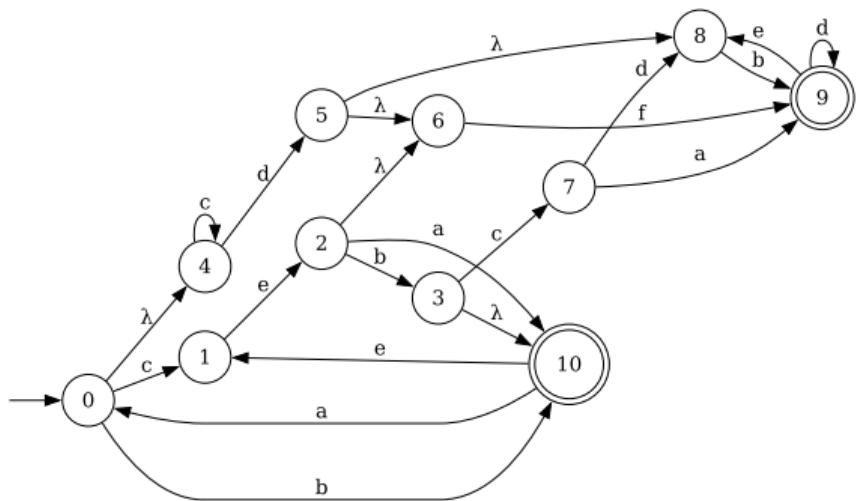
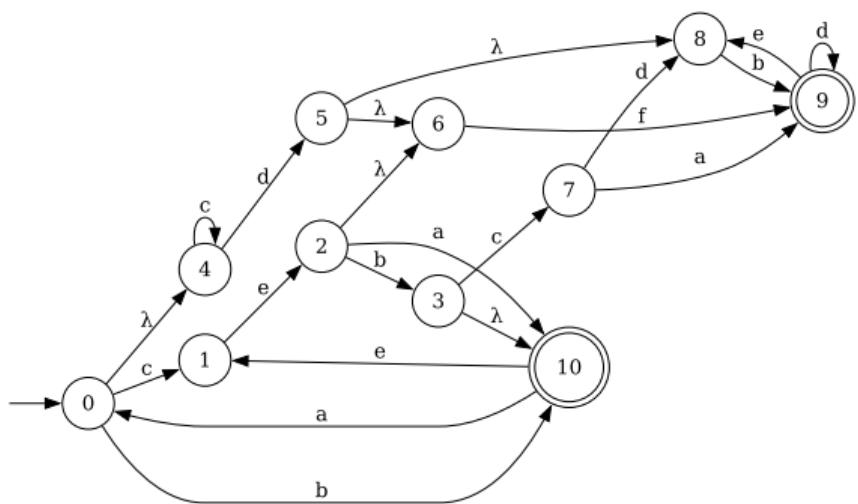


Why Don't We Use NFAs during Scanning?



- i. How can we represent an NFA in computer memory?

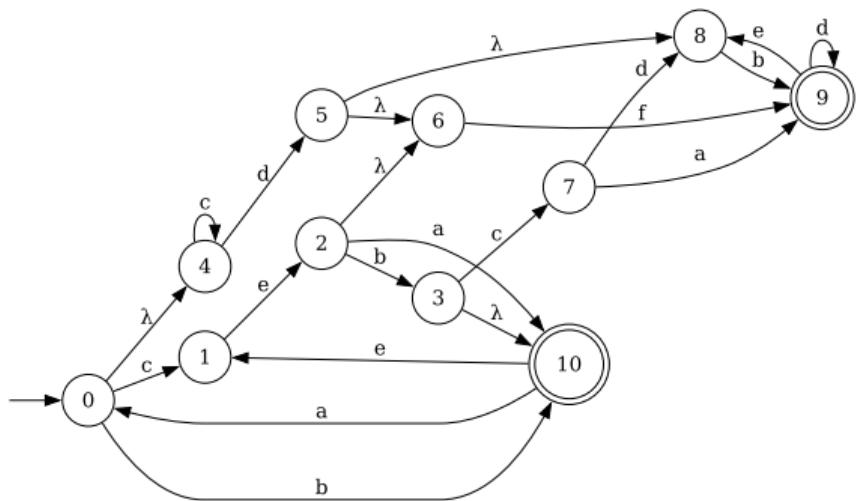
Why Don't We Use NFAs during Scanning?



- i. How can we represent an NFA in computer memory?

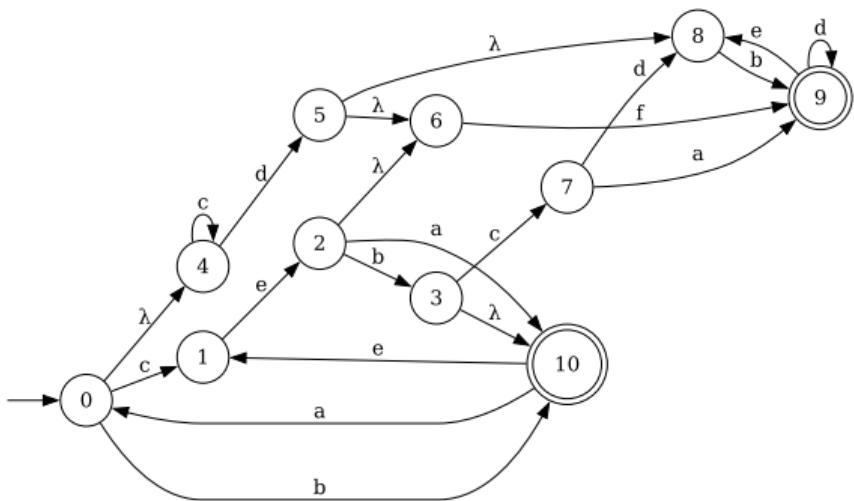
An $n \times n$ Boolean matrix for λ s, and a $state \times c \in \Sigma$ "transition table" whose cells contain what?

Why Don't We Use NFAs during Scanning?



- i. How can we represent an NFA in computer memory?
An $n \times n$ Boolean matrix for λ s, and a $state \times c \in \Sigma$ “transition table” whose cells contain what?
- ii. While matching a character sequence to an NFA, what type of data structure must be used to remember where in the NFA we are?

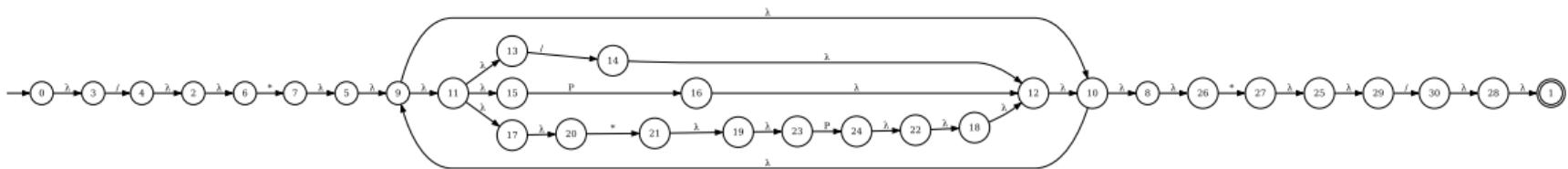
Why Don't We Use NFAs during Scanning?



- i. How can we represent an NFA in computer memory?
An $n \times n$ Boolean matrix for λ s, and a *state* \times $c \in \Sigma$ “transition table” whose cells contain what?
- ii. While matching a character sequence to an NFA, what type of data structure must be used to remember where in the NFA we are?
- iii. Can we represent a DFA more efficiently?
- iv. What data structure is required to remember DFA matching state?

Why Don't We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools (in fact, all of which you will build in this course!)...



c++comment-automated.pdf

NFA to DFA Algorithm

initialization

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
----------	-----------	-------	---	---	---	---	---	---

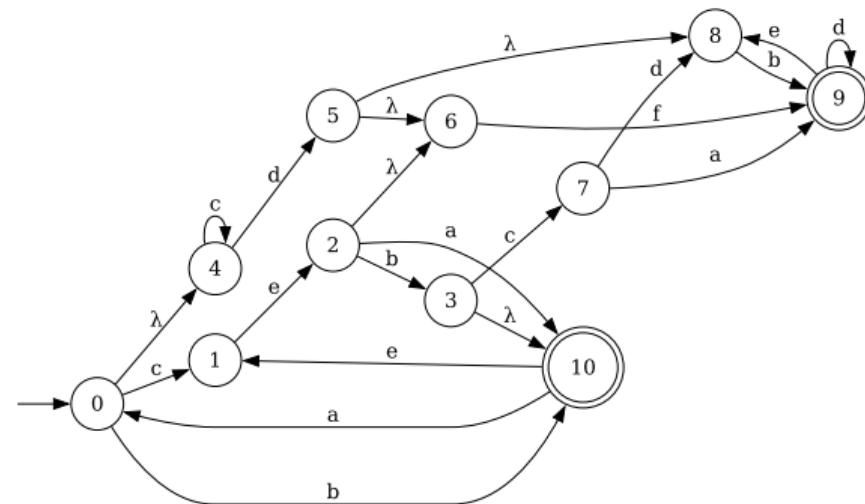
procedure NFAToDFA(N an NFA)

Let $T[\text{row}][\text{col}]$ be an empty transition table defining D . $T[\text{row}][\cdot]$ is uniquely identified by a set of states from N , each $T[\cdot][\text{col}]$ uniquely identifies a character $c \in \Sigma$.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N



NFA to DFA Algorithm

FollowLambda

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
----------	-----------	-------	---	---	---	---	---	---

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

procedure NFAToDFA(N an NFA)

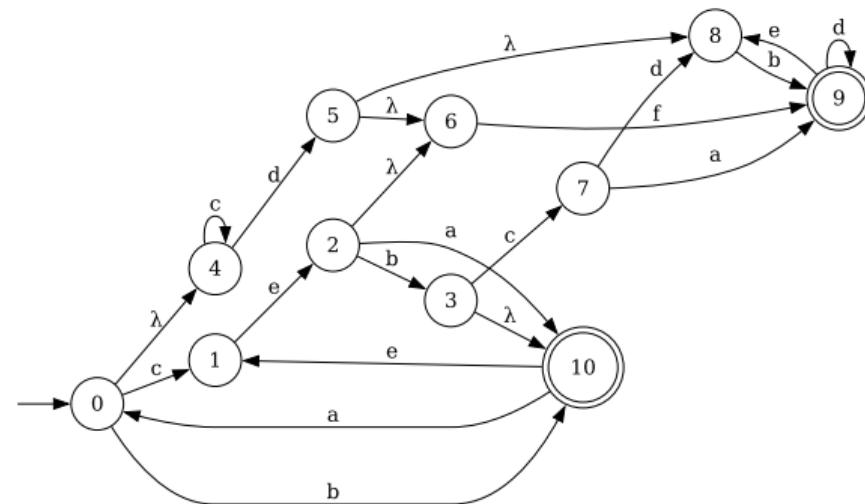
Let $T[\text{row}][\text{col}]$ be an empty transition table defining D . $T[\text{row}][\cdot]$ is uniquely identified by a set of states from N , each $T[\cdot][\text{col}]$ uniquely identifies a character $c \in \Sigma$.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

$B \leftarrow \text{FollowLambda}(\{i\})$



NFA to DFA Algorithm

FollowLambda

$$A = \{9, 10\}$$

$$i = 0$$

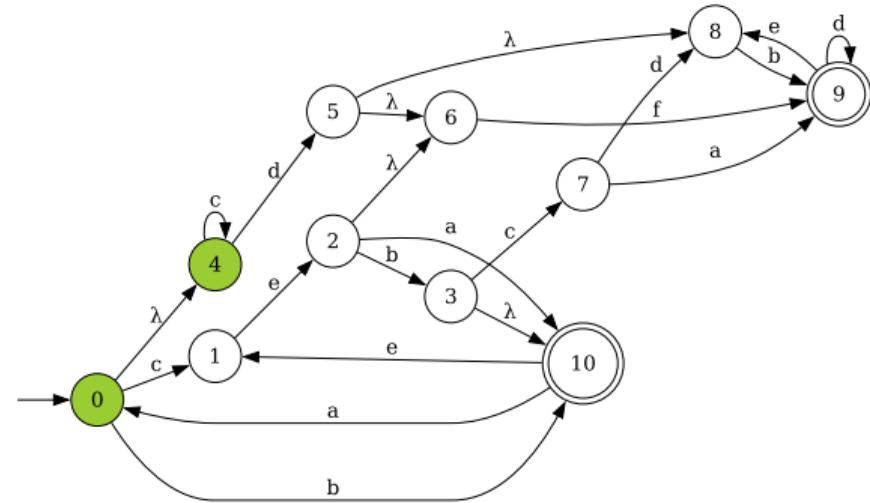
Stack L <empty>

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
----------	-----------	-------	---	---	---	---	---	---

```
procedure FollowLambda(  $S$  a  $\subseteq$  of NFA  $N$  states )
returns the set of NFA states encountered by
recursively following only  $\lambda$  transitions
from states in  $S$ 
```

```
Let  $M$  be an empty stack
foreach ( state  $t \in S$  ) push  $t$  onto  $M$ 
while (  $|M| > 0$  ) do (
   $t \leftarrow$  pop  $M$ 
  foreach (  $\lambda$  transition from  $t$  to state  $q$  ) do (
    if (  $q \notin S$  ) then (
      add  $q$  to  $S$ 
      push  $q$  onto  $M$ 
    )
  )
)
return  $S$ 
```



NFA to DFA Algorithm

FollowLambda

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L <\{0, 4\}>$$

$$B = \{0, 4\}$$

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}						

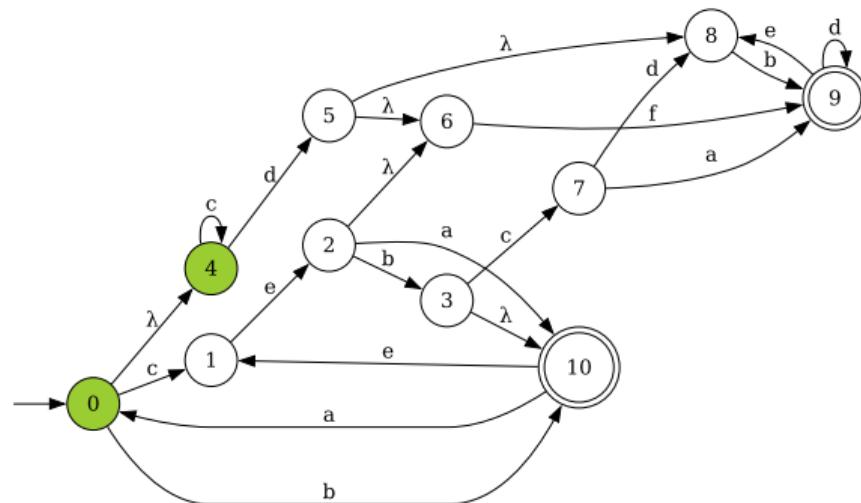
procedure NFAToDFA(N an NFA)

Let $T[\text{row}][\text{col}]$ be an empty transition table defining D . $T[\text{row}][:]$ is uniquely identified by a set of states from N , each $T[:][\text{col}]$ uniquely identifies a character $c \in \Sigma$.

```

let  $L$  be an empty stack
let  $A$  be the set of accepting states for  $N$ 
let  $i$  be the starting state of  $N$ 
 $B \leftarrow \text{FollowLambda}(\{i\})$ 
initialize row  $T[B][:]$ 
mark  $T[B][:]$  as the starting state of  $D$ 
if ( $A \cap B \neq \emptyset$ ) then (
  mark  $T[B][:]$  as an accepting state of  $D$ 
)
push  $B$  onto  $L$ 

```



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

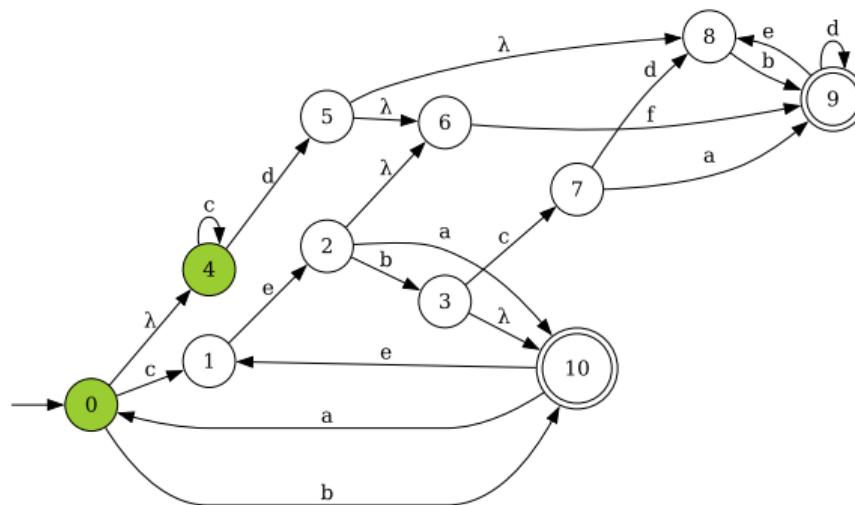
$$c = a$$

```

repeat (
  S ← pop L
  foreach (  $c \in \Sigma$  ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if (  $A \cap R \neq \emptyset$  ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T						
is Start	is Accept	State	a	b	c	d
Y	N	{0,4}				



NFA to DFA Algorithm

FollowChar

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

$$c = a$$

$$\emptyset \leftarrow \text{FollowChar}(S, c)$$

procedure FollowChar(S a \subseteq of NFA N states, $c \in \Sigma$)
 returns the set of NFA states obtained from following
 all c transitions from states in S

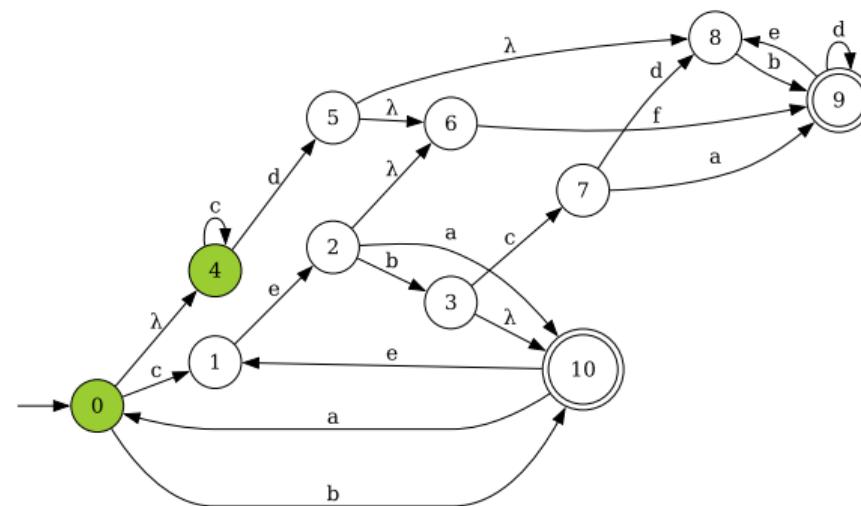
Let F be an empty set

```
foreach ( state  $t \in S$  ) do (
  foreach (  $c$  transition from  $t$  to state  $q$  ) do (
    add  $q$  to  $F$ 
  )
)
```

return F

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}						



NFA to DFA Algorithm

FollowLambda

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

$$c = a$$

$$\emptyset \leftarrow \text{FollowLambda}(\emptyset)$$

```
procedure FollowLambda(  $S$  a  $\subseteq$  of NFA  $N$  states )
  returns the set of NFA states encountered by
  recursively following only  $\lambda$  transitions
  from states in  $S$ 
```

Let M be an empty stack

```
foreach ( state  $t \in S$  ) push  $t$  onto  $M$ 
while (  $|M| > 0$  ) do (
```

$t \leftarrow \text{pop } M$

```
  foreach (  $\lambda$  transition from  $t$  to state  $q$  ) do (
```

```
    if (  $q \notin S$  ) then (
```

add q to S

push q onto M

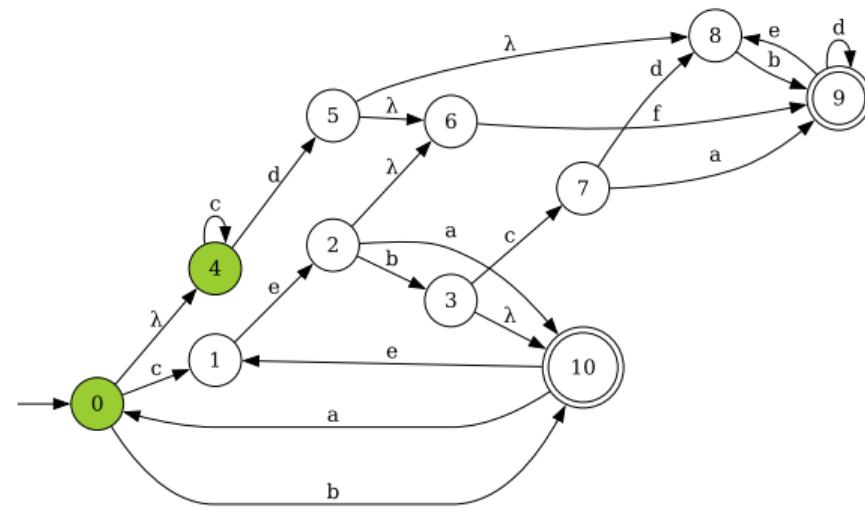
)

)

return S

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

$$c = a$$

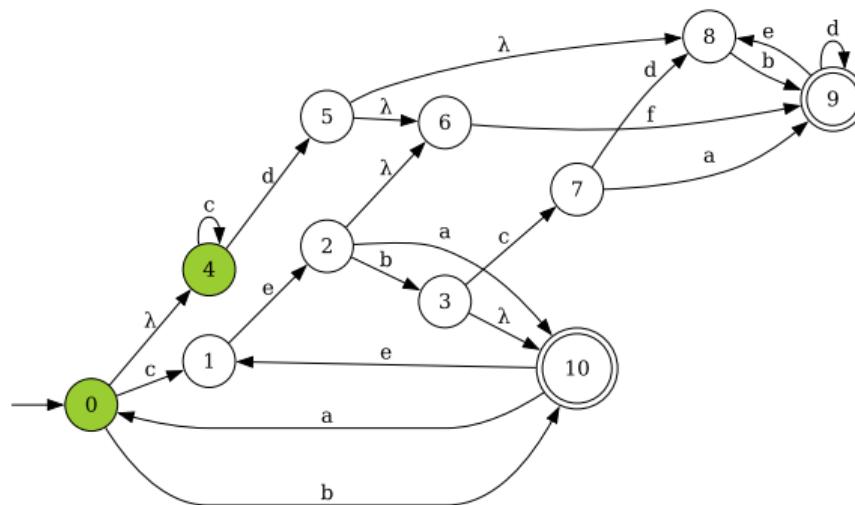
$$R = \emptyset$$

```

repeat (
  S ← pop L
  foreach (  $c \in \Sigma$  ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if (  $A \cap R \neq \emptyset$  ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T						
is Start	is Accept	State	a	b	c	d
Y	N	{0,4}	\emptyset			



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

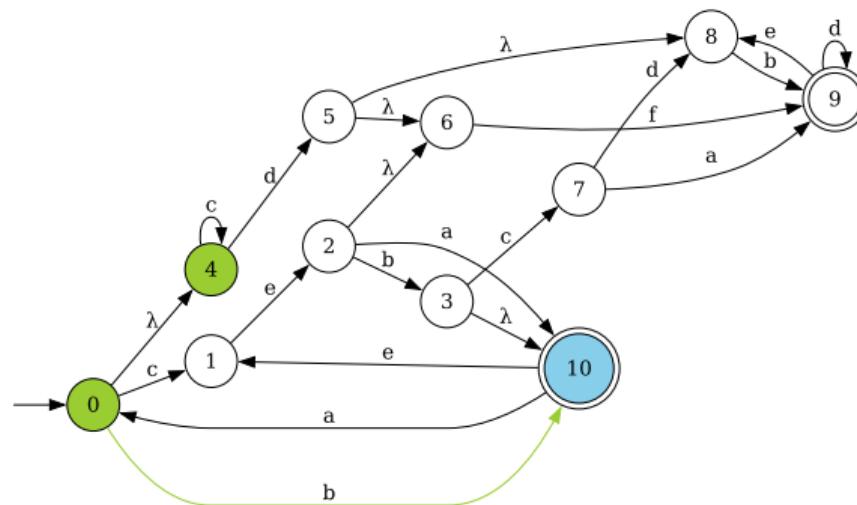
$$c = b$$

$$\{10\} \leftarrow \text{FollowChar}(S, c)$$

procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$)
 returns the set of NFA states obtained from following
 all c transitions from states in S

Let F be an empty set
foreach (state $t \in S$) **do** (
foreach (c transition from t to state q) **do** (
 add q to F
)
)
return F

Transition Table T						
is Start	is Accept	State	a	b	c	d
Y	N	{0,4}	\emptyset			



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack L <empty>

$$S = \{0, 4\}$$

$$c = b$$

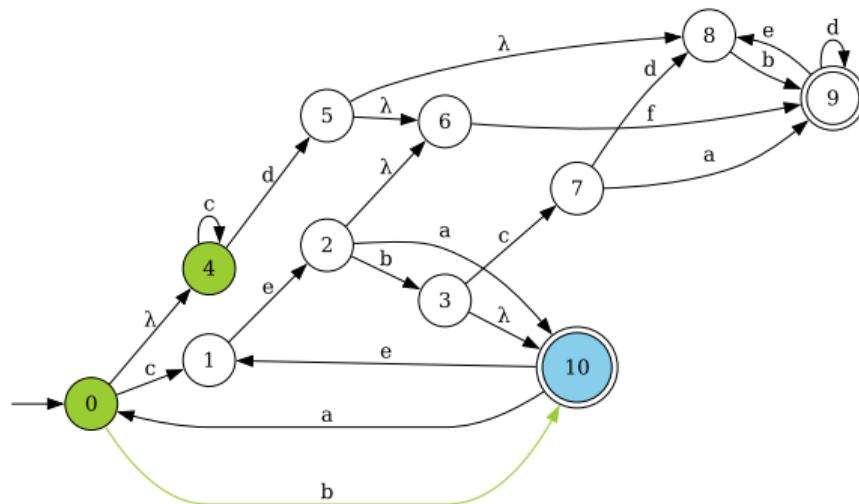
$$\{10\} \leftarrow FollowLambda(\{10\})$$

```
procedure FollowLambda(  $S$  a  $\subseteq$  of NFA  $N$  states )
  returns the set of NFA states encountered by
  recursively following only  $\lambda$  transitions
  from states in  $S$ 
```

```
  Let  $M$  be an empty stack
  foreach ( state  $t \in S$  ) push  $t$  onto  $M$ 
  while (  $|M| > 0$  ) do (
     $t \leftarrow$  pop  $M$ 
    foreach (  $\lambda$  transition from  $t$  to state  $q$  ) do (
      if (  $q \notin S$  ) then (
        add  $q$  to  $S$ 
        push  $q$  onto  $M$ 
      )
    )
  )
  return  $S$ 
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset					



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L <\{10\}>$

$$S = \{0, 4\}$$

$$c = b$$

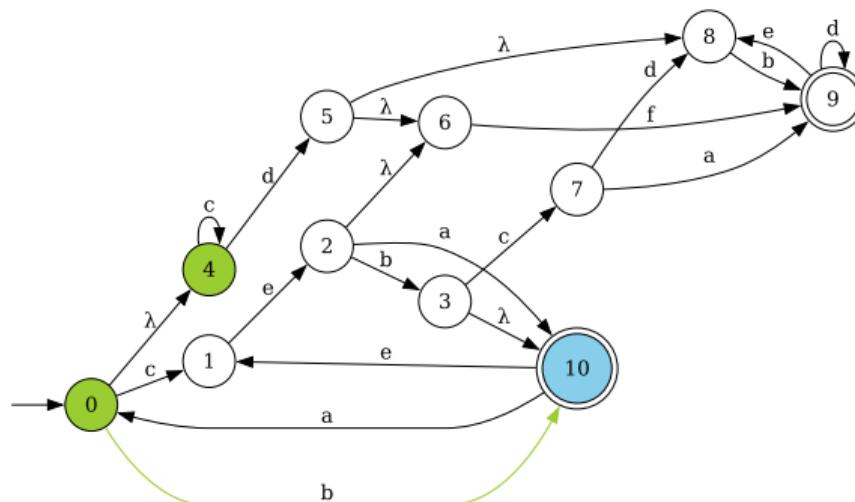
$$R = \{10\}$$

```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if ( A ∩ R ≠ ∅ ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T								
is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	Ø	{10}				
N	Y	{10}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L <\{10\}>$

$$S = \{0, 4\}$$

$$c = c$$

$$\{1, 4\} \leftarrow \text{FollowChar}(S, c)$$

procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$)
 returns the set of NFA states obtained from following
 all c transitions from states in S

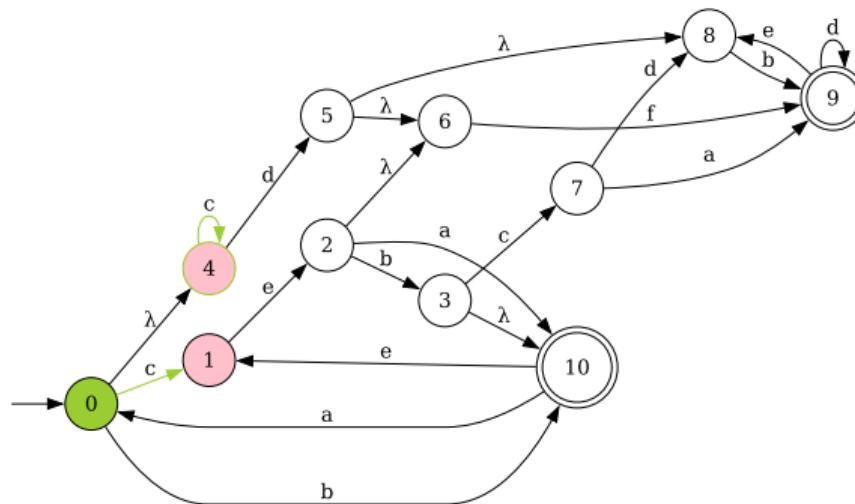
Let F be an empty set

```
foreach ( state  $t \in S$  ) do (
    foreach (  $c$  transition from  $t$  to state  $q$  ) do (
        add  $q$  to  $F$ 
    )
)
```

return F

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset	{10}				
N	Y	{10}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L <\{10\}>$

$$S = \{0, 4\}$$

$$c = \mathbf{C}$$

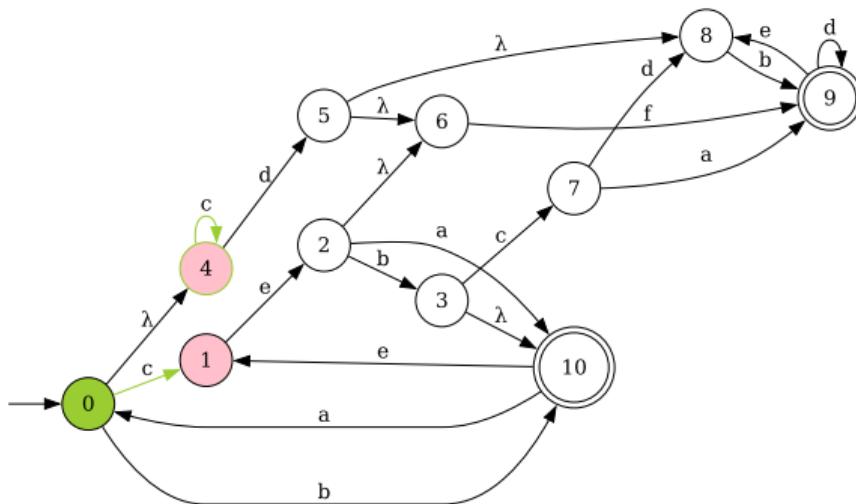
$$\{1, 4\} \leftarrow \text{FollowLambda}(\{1, 4\})$$

```
procedure FollowLambda(  $S$  a  $\subseteq$  of NFA  $N$  states )
returns the set of NFA states encountered by
recursively following only  $\lambda$  transitions
from states in  $S$ 
```

```
Let  $M$  be an empty stack
foreach ( state  $t \in S$  ) push  $t$  onto  $M$ 
while (  $|M| > 0$  ) do (
   $t \leftarrow$  pop  $M$ 
  foreach (  $\lambda$  transition from  $t$  to state  $q$  ) do (
    if (  $q \notin S$  ) then (
      add  $q$  to  $S$ 
      push  $q$  onto  $M$ 
    )
  )
)
return  $S$ 
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset	{10}				
N	Y	{10}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L < \{1, 4\}, \{10\} >$

$$S = \{0, 4\}$$

$$c = \mathbf{C}$$

$$R = \{1, 4\}$$

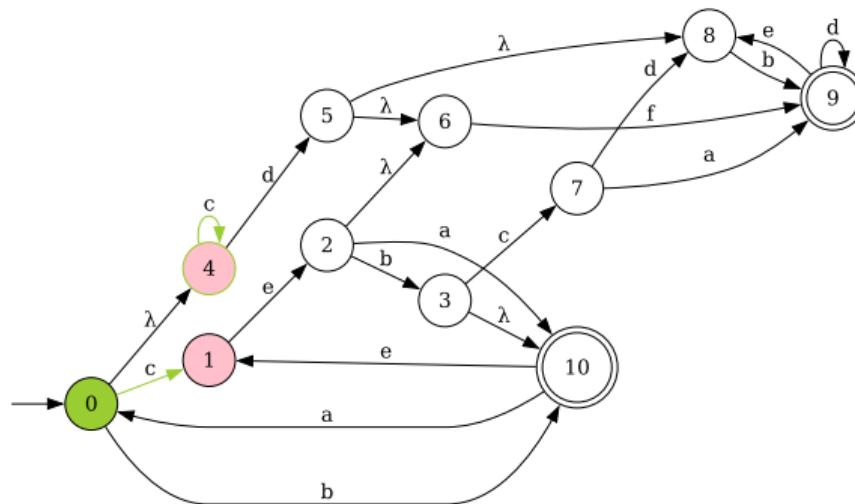
```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if ( A ∩ R ≠ ∅ ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}			
N	Y	{10}						
N	N	{1,4}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L <\{1,4\}, \{10\}>$

$$S = \{0, 4\}$$

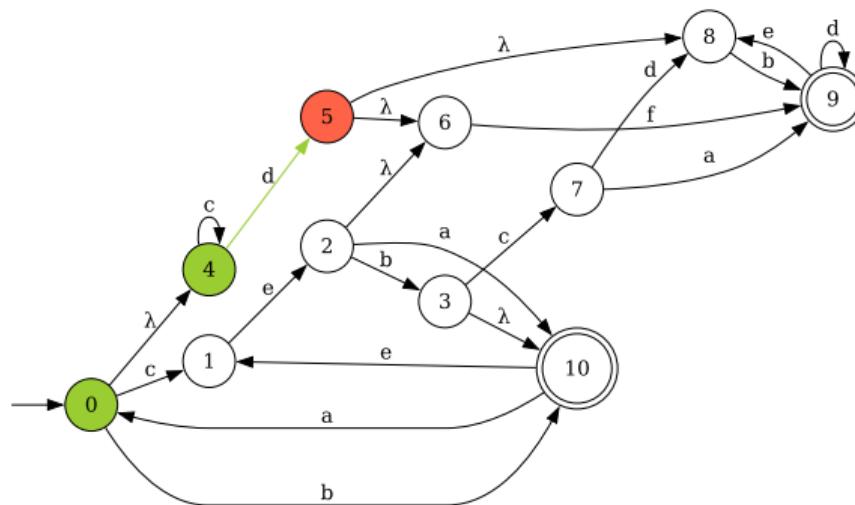
$$c = d$$

$$\{5\} \leftarrow \text{FollowChar}(S, c)$$

procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$)
 returns the set of NFA states obtained from following
 all c transitions from states in S

Let F be an empty set
foreach (state $t \in S$) **do** (
foreach (c transition from t to state q) **do** (
 add q to F
)
)
return F

Transition Table T								
is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset	{10}	{1,4}			
N	Y	{10}						
N	N	{1,4}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L < \{1, 4\}, \{10\} >$

$$S = \{0, 4\}$$

$$c = d$$

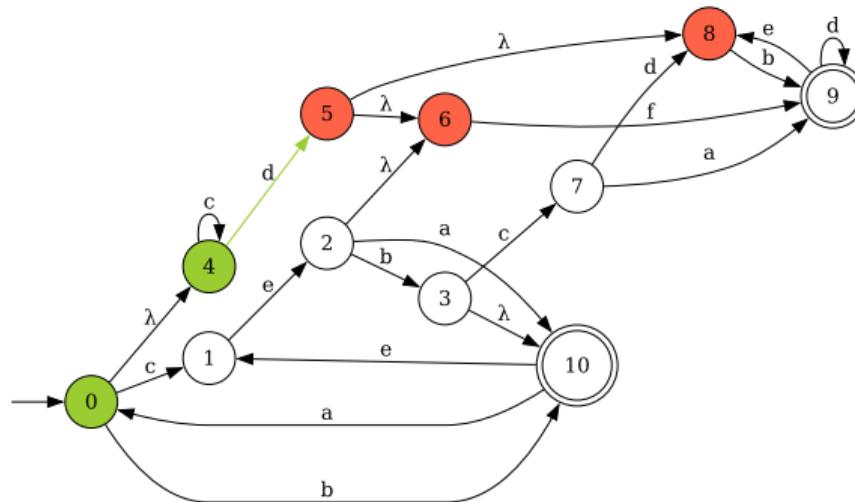
$$\{5, 6, 8\} \leftarrow \text{FollowLambda}(\{5\})$$

```
procedure FollowLambda(  $S$  a  $\subseteq$  of NFA  $N$  states )
returns the set of NFA states encountered by
recursively following only  $\lambda$  transitions
from states in  $S$ 
```

```
Let  $M$  be an empty stack
foreach ( state  $t \in S$  ) push  $t$  onto  $M$ 
while (  $|M| > 0$  ) do (
   $t \leftarrow \text{pop } M$ 
  foreach (  $\lambda$  transition from  $t$  to state  $q$  ) do (
    if (  $q \notin S$  ) then (
      add  $q$  to  $S$ 
      push  $q$  onto  $M$ 
    )
  )
)
return  $S$ 
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset	{10}	{1,4}			
N	Y	{10}						
N	N	{1,4}						



NFA to DFA Algorithm

discover new state sets

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{5, 6, 8\}, \{1, 4\}, \{10\} >$$

$$S = \{0, 4\}$$

$$d = \mathbf{d}$$

$$R = \{5, 6, 8\}$$

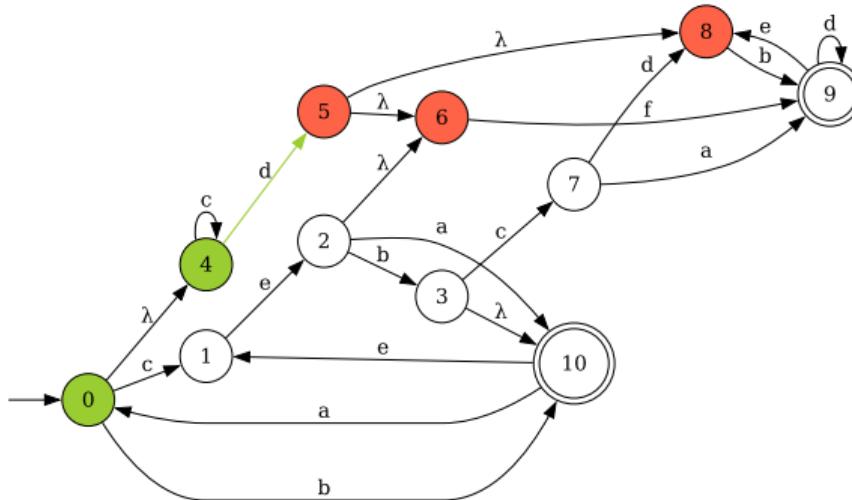
```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if ( A ∩ R ≠ ∅ ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}		
N	Y	{10}						
N	N	{1,4}						
N	N	{5,6,8}						



NFA to DFA Algorithm

characters e and f yield \emptyset

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{5, 6, 8\}, \{1, 4\}, \{10\} >$$

$$S = \{0, 4\}$$

$$c = f$$

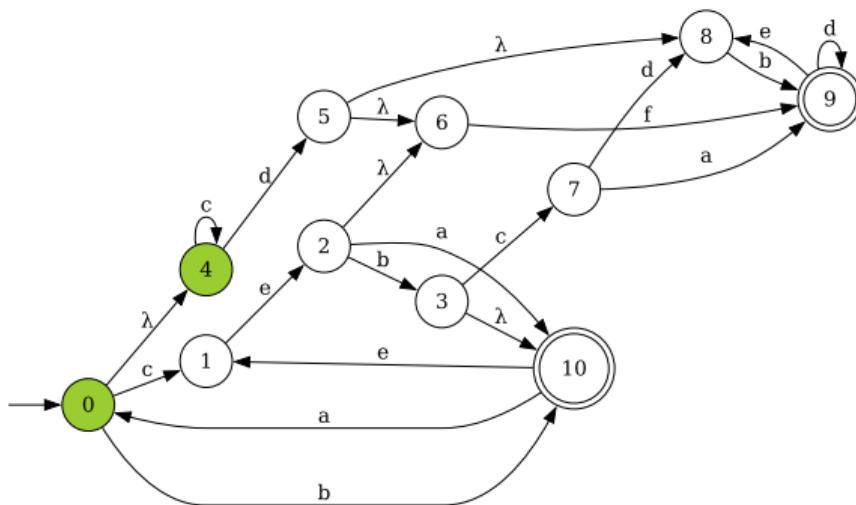
$$R = \emptyset$$

```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
    if ( A ∩ R ≠ ∅ ) then (
      mark T[R][:] as an accepting state of D
    )
    push R onto L
  )
) while ( |L| > 0 )
  
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}	∅	∅
N	Y	{10}						
N	N	{1,4}						
N	N	{5,6,8}						



NFA to DFA Algorithm pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

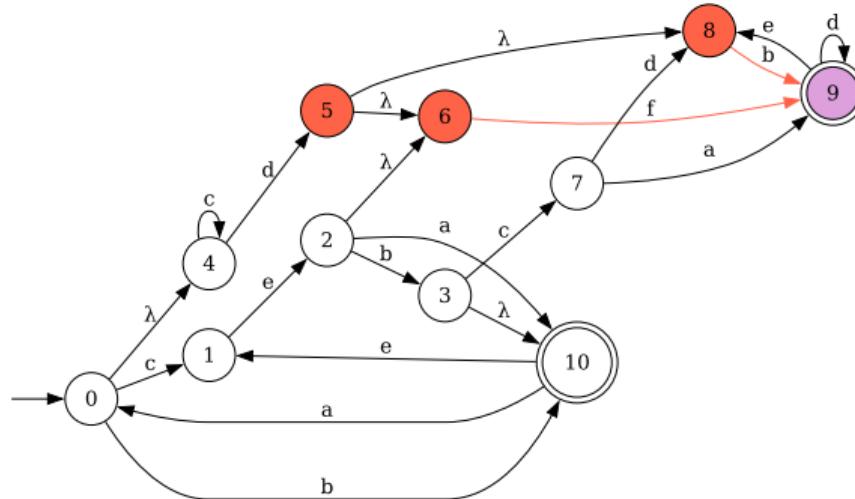
$$\text{Stack } L <\{9\}, \{1,4\}, \{10\}>$$

$$S = \{5, 6, 8\}$$

```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
    if ( A ∩ R ≠ ∅ ) then (
      mark T[R][:] as an accepting state of D
    )
    push R onto L
  )
) while ( |L| > 0 )
  
```

		Transition Table T							
is Start	is Accept	State	a	b	c	d	e	f	
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}	∅	∅	
N	Y	{10}							
N	N	{1,4}							
N	N	{5,6,8}	∅	{9}	∅	∅	∅	∅	
N	Y	{9}							



NFA to DFA Algorithm pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

Stack $L <\{8\}, \{1,4\}, \{10\}>$

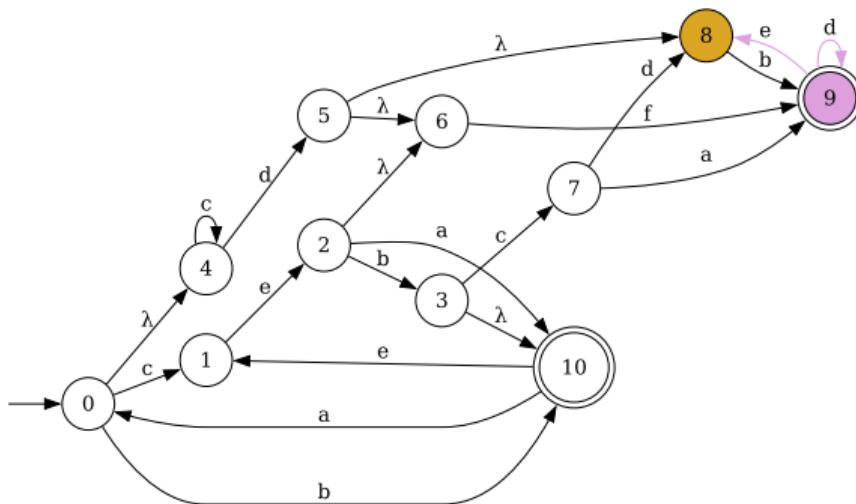
$$S = \{9\}$$

```

repeat (
  S ← pop L
  foreach (  $c \in \Sigma$  ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
    if (  $A \cap R \neq \emptyset$  ) then (
      mark T[R][:] as an accepting state of D
    )
    push R onto L
  )
)
while ( |L| > 0 )
  
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	\emptyset	{10}	{1,4}	{5,6,8}	\emptyset	\emptyset
N	Y	{10}						
N	N	{1,4}						
N	N	{5,6,8}	\emptyset	{9}	\emptyset	\emptyset	\emptyset	{9}
N	Y	{9}	\emptyset	\emptyset	\emptyset	{9}	{8}	\emptyset
N	N	{8}						



NFA to DFA Algorithm pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{1, 4\}, \{10\} >$$

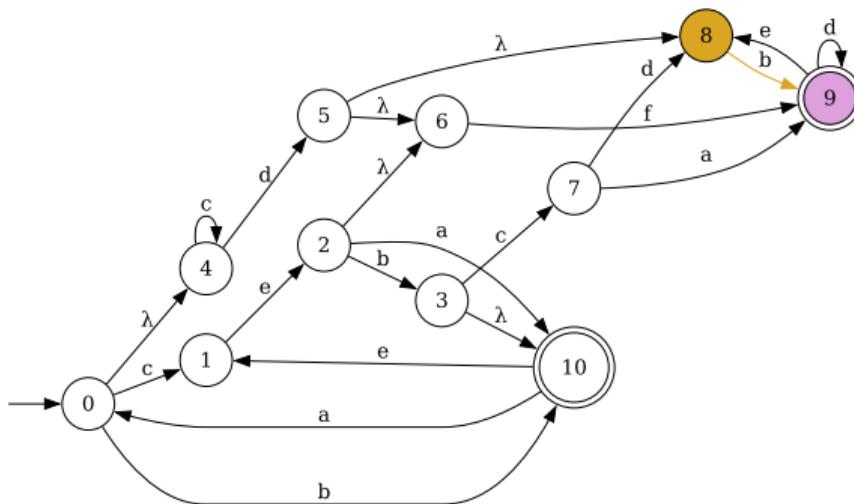
$$S = \{8\}$$

```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
    if ( A ∩ R ≠ ∅ ) then (
      mark T[R][:] as an accepting state of D
    )
    push R onto L
  )
) while ( |L| > 0 )
  
```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}	∅	∅
N	Y	{10}						
N	N	{1,4}						
N	N	{5,6,8}	∅	{9}	∅	∅	∅	{9}
N	Y	{9}	∅	∅	∅	{9}	{8}	∅
N	N	{8}	∅	{9}	∅	∅	∅	∅



NFA to DFA Algorithm pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{2, 6\}, \{4\}, \{10\} >$$

$$S = \{1, 4\}$$

$$c = \mathbf{c}$$

$$R = \{4\}$$

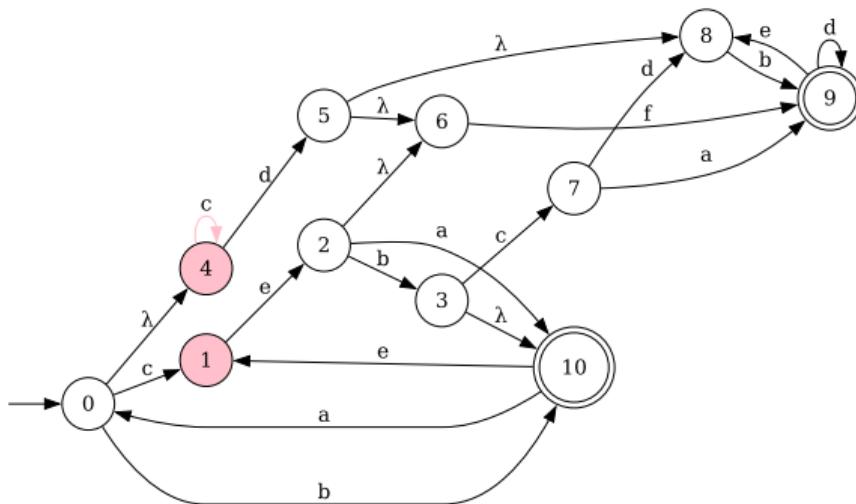
```

repeat (
   $S \leftarrow \text{pop } L$ 
  foreach (  $c \in \Sigma$  ) do (
     $R \leftarrow \text{FollowLambda}(\text{FollowChar}(S, c))$ 
     $T[S][c] \leftarrow R$ 
    if (  $|R| > 0$  AND  $T[R][:]$  does not exist ) then (
      initialize row  $T[R][:]$ 
      if (  $A \cap R \neq \emptyset$  ) then (
        mark  $T[R][:]$  as an accepting state of  $D$ 
      )
      push  $R$  onto  $L$ 
    )
  )
) while (  $|L| > 0$  )

```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	Ø	{10}	{1,4}	{5,6,8}	Ø	Ø
N	Y	{10}						
N	N	{1,4}	Ø	Ø	{4}			
N	N	{5,6,8}	Ø	{9}	Ø	Ø	Ø	{9}
N	Y	{9}	Ø	Ø	Ø	{9}	{8}	Ø
N	N	{8}	Ø	{9}	Ø	Ø	Ø	Ø
N	N	{4}						



NFA to DFA Algorithm

pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{2, 6\}, \{4\}, \{10\} >$$

$$S = \{1, 4\}$$

$$c = d$$

$$R = \{5, 6, 8\}$$

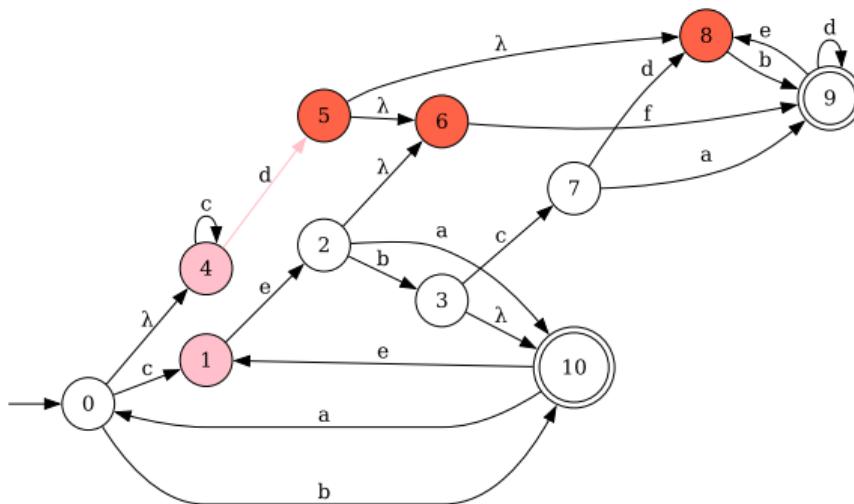
```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if ( A ∩ R ≠ ∅ ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}	∅	∅
N	Y	{10}						
N	N	{1,4}	∅	∅	{4}	{5,6,8}		
N	N	{5,6,8}	∅	{9}	∅	∅	∅	{9}
N	Y	{9}	∅	∅	∅	{9}	{8}	∅
N	N	{8}	∅	{9}	∅	∅	∅	∅
N	N	{4}						



NFA to DFA Algorithm pop L and do it all again

$$A = \{9, 10\}$$

$$i = 0$$

$$\text{Stack } L < \{2, 6\}, \{4\}, \{10\} >$$

$$S = \{1, 4\}$$

$$c = e$$

$$R = \{2, 6\}$$

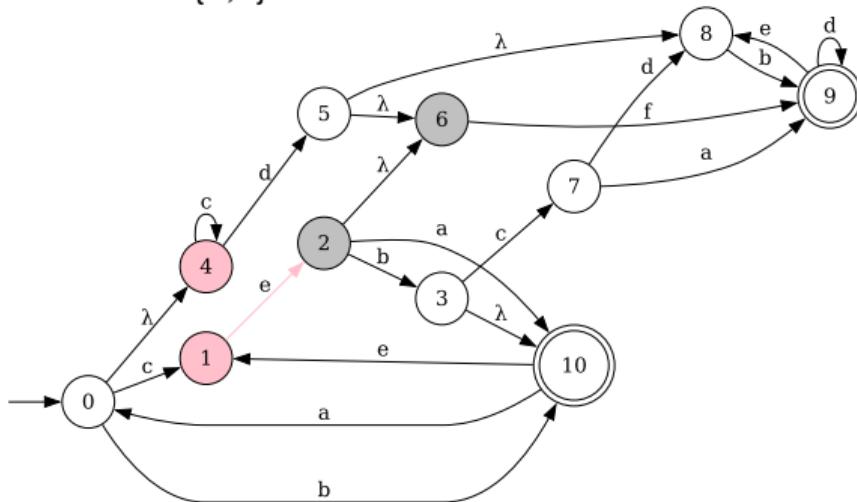
```

repeat (
  S ← pop L
  foreach ( c ∈ Σ ) do (
    R ← FollowLambda(FollowChar(S, c))
    T[S][c] ← R
    if ( |R| > 0 AND T[R][:] does not exist ) then (
      initialize row T[R][:]
      if ( A ∩ R ≠ ∅ ) then (
        mark T[R][:] as an accepting state of D
      )
      push R onto L
    )
  )
) while ( |L| > 0 )

```

Transition Table T

is Start	is Accept	State	a	b	c	d	e	f
Y	N	{0,4}	∅	{10}	{1,4}	{5,6,8}	∅	∅
N	Y	{10}						
N	N	{1,4}	∅	∅	{4}	{5,6,8}	{2,6}	
N	N	{5,6,8}	∅	{9}	∅	∅	∅	{9}
N	Y	{9}	∅	∅	∅	{9}	{8}	∅
N	N	{8}	∅	{9}	∅	∅	∅	∅
N	N	{4}						
N	N	{2,6}						

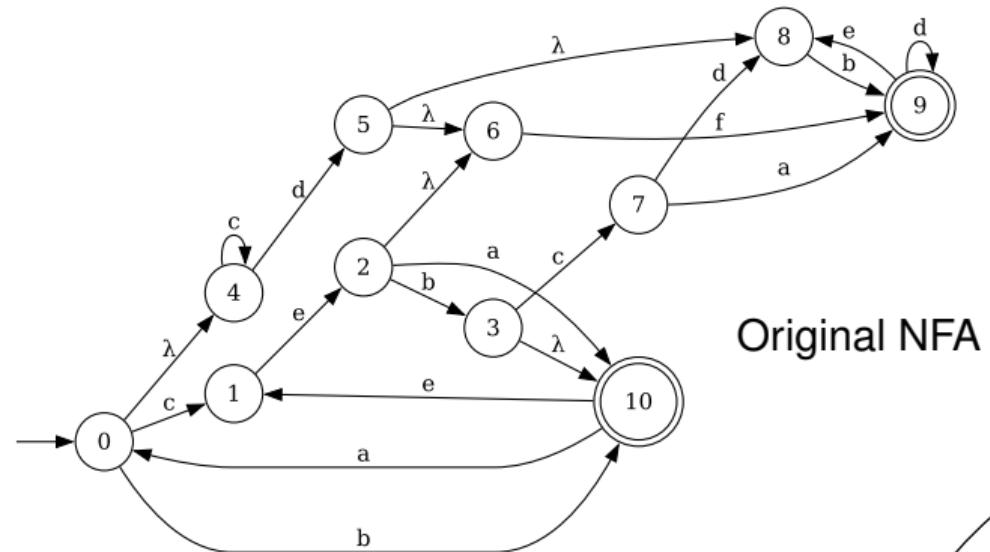


NFA to DFA Algorithm

Transition Table T

	is Start	is Accept	State	a	b	c	d	e	f
$A = \{9, 10\}$	Y	N	$\{0, 4\}$	\emptyset	$\{10\}$	$\{1, 4\}$	$\{5, 6, 8\}$	\emptyset	\emptyset
$i = 0$	N	Y	$\{10\}$	$\{0, 4\}$	\emptyset	\emptyset	\emptyset	$\{1\}$	\emptyset
Stack $L <\text{empty}>$	N	N	$\{1, 4\}$	\emptyset	\emptyset	$\{4\}$	$\{5, 6, 8\}$	$\{2, 6\}$	\emptyset
	N	N	$\{5, 6, 8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$
	N	Y	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$	$\{8\}$	\emptyset
	N	N	$\{8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	\emptyset
	N	N	$\{4\}$	\emptyset	\emptyset	$\{4\}$	$\{5, 6, 8\}$	\emptyset	\emptyset
	N	N	$\{2, 6\}$	$\{10\}$	$\{3, 10\}$	\emptyset	\emptyset	\emptyset	$\{9\}$
	N	Y	$\{3, 10\}$	$\{0, 4\}$	\emptyset	$\{7\}$	\emptyset	$\{1\}$	\emptyset
	N	N	$\{7\}$	$\{9\}$	\emptyset	\emptyset	$\{8\}$	\emptyset	\emptyset
	N	N	$\{1\}$	\emptyset	\emptyset	\emptyset	\emptyset	$\{2, 6\}$	\emptyset

When L is empty, the table T holds a DFA derived from the original NFA.



Equivilant DFA

