Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer
memory?

Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer
memory?
An n x n Boolean matrix for As, and a
state X ¢ € X “transition table” whose cells
contain what?

Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer
memory?
An n x n Boolean matrix for As, and a
state X ¢ € X “transition table” whose cells
contain what?

ii. While matching a character sequence to an
NFA, what type of data structure must be used
to remember where in the NFA we are?

Why Don’t We Use NFAs during Scanning?

ii.

iil.

iv.

. How can we represent an NFA in computer

memory?

An n x n Boolean matrix for As, and a
state X ¢ € X “transition table” whose cells
contain what?

While matching a character sequence to an
NFA, what type of data structure must be used
to remember where in the NFA we are?

Can we represent a DFA more efficiently?

What data structure is required to remember
DFA matching state?

Why Don’t We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools
(in fact, all of which you will build in this coursel). ..

:

(RO

ct+comment-automated.pdf

https://cs.mcprogramming.com/static/comp/hr/58da6ee3f6b3adf2/c++comment-automated.pdf

NFA to DFA Algorithm _ _ Transition Table 7
initialization isStart isAccept State a b c¢ d

A={9,10}
i=0
Stack L <empty>

procedure NFAtoDFA(N an NFA)
Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of

states from N, each T[]lcol] uniquely identifies
a character c€ZX.

let L be an empty stack

let A be the set of accepting states for N
let i be the starting state of N

NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
A=1{9,10}
i=0

Stack L <empty>

procedure NFAtoDFA(N an NFA)

Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of
states from N, each T[]lcol] uniquely identifies

a character c€ZX.

let L be an empty stack

let A be the set of accepting states for N
let i be the starting state of N

B+ FollowLamda ({t})

NFA to DFA Algorithm _ _Transition Table 7
FollowLambda isStart isAccept State a b ¢ d e f

A={9,10}
i=0
Stack L <empty>

procedure FollowLambda(§ a C of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state r€S) push ¢t onto M
while ([M|>0) do (
t< pop M
foreach (A transition from f to state g) do (
if (g¢S) then (
add g to S
push g onto M

)
)
return §

NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
Y N {0,4}
A=1{9,10}
i=0
Stack L <{0,4}>
B={0,4}

procedure NFAtoDFA(N an NFA)

Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of
states from N, each T[]lcol] uniquely identifies

a character c€ZX.

let L be an empty stack
let A be the set of accepting states for N
let i be the starting state of N
B+ FollowLamda ({t})
initialize row T[B|[]
mark T[B][:] as the starting state of D
if (A(NB#0) then (
mark T[B][] as an accepting state of D
)
push B onto L

NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b ¢ d e f
Y N {0,4}
A={9,10}
i=0
Stack L <empty>
§=4{0,4}
c=a
repeat (

S+ pop L
foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

FollowChar isStart isAccept State a b ¢ d e f
Y N {0,4}

A=1{9,10}

i=0

Stack L <empty>

§={0,4}

c=a

0 <+ FollowChar(S,c¢)

procedure FollowChar (§ a C of NFA N states, c€X)

returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach (state r€S) do (
foreach (¢ transition from r to state ¢) do (
add g to F
)

return F

NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
Y N {0,4}

A={9,10}

i=0

Stack L <empty>

§={0,4}

c=a

0 < FollowLambda(0)

procedure FollowLambda(§ a C of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state r€S) push ¢t onto M
while ([M|>0) do (
t< pop M
foreach (A transition from f to state g) do (
if (g¢S) then (
add g to S
push g onto M
)
)
)
return §

NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {04 0

A={9,10}
i=0

Stack L <empty>
§=4{0,4}

c=a

R=0

repeat (
S+ pop L
foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {04 0

A=1{9,10}

i=0

Stack L <empty>

S =1{0,4}

c=b

{10} « FollowChar(S,c)

procedure FollowChar (§ a C of NFA N states, c€X)
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach (state r€S) do (
foreach (¢ transition from r to state ¢) do (
add g to F
)

return F

NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04} 0

A={9,10}

i=0

Stack L <empty>

§={0,4}

c=b

{10} < FollowLambda({10})

procedure FollowLambda(§ a C of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state r€S) push ¢t onto M
while ([M|>0) do (
t< pop M
foreach (A transition from f to state g) do (
if (g¢S) then (
add g to S
push g onto M
)
)
)
return §

NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {0,4f 0 {10}
A=1{9,10} N % {10}
i=0
Stack L <{10}>
§=4{0,4}
c=b
R=1{10}

repeat (
S+ pop L
foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T’

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04y 0 {10}

A=1{9,10} N Y {10}

i=0

Stack L <{10}>

S ={0,4}

c=c

{1,4} < FollowChar(S,c)

procedure FollowChar (§ a C of NFA N states, c€X)
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach (state r€S) do (
foreach (¢ transition from r to state ¢) do (
add g to F
)
)

return F

NFA to DFA Algorithm Transition Table T’

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04, 0 {10}

A={9,10} N Y {10}

i=0

Stack L <{10}>

S =1{0,4}

c=c¢

{1,4} « FollowLambda({1,4}

procedure FollowLambda(§ a C of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state r€S) push ¢t onto M
while ([M|>0) do (
t< pop M
foreach (A transition from f to state g) do (
if (g¢S) then (
add g to S
push g onto M
)
)
)
return §

NFA to DFA Algorithm Transition Table T

discover new state sets is Start is Accept State a b c d e f
Y N 04 0 {10} {1,4}
A={9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
§=4{0,4}
c=¢
R=1{1,4}
repeat (
S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

discover new state sets is Start isAccept State a b c d e f
Y N {04 0 {10} {1,4
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
§={0,4}
c=d

{5} « FollowChar(S,c)

procedure FollowChar (§ a C of NFA N states, c€X)
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach (state r€S) do (
foreach (¢ transition from r to state ¢) do (
add g to F
)
)

return F

NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b c d e f
Y N {04 0 ({10} {1,4}
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
S =1{0,4}
c=d

{5,6,8} + FollowLambda({5})

procedure FollowLambda(§ a C of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state t€S) push tr onto M
while ([M|>0) do (
t< pop M
foreach (A transition from f to state g) do (
if (g¢S) then (
add g to S
push g onto M
)
)
)
return §

NFA to DFA Algorithm Transition Table T

discover new state sets is Start isAccept State a b c d e f
Y N {04y 0 {10} {14} {568}
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{5,6,8},{1,4},{10}> N N {5.6,8}
§={0,4}
d=d
R={5,6,8}
repeat (

S+ pop L
foreach (c€X) do (
R+ FollowLambda (FollowChar (§,c))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

characters e and f yield 0 is Start is Accept State a b c d e f
Y N {04y 0 {10} {1,4 {568 0 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{5,6,8},{1,4},{10}> N N {5.6,8}
§=4{0,4}
c=f
R=0
repeat (

S+ pop L
foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm
pop L and do it all again

A={9,10}

i=0

Stack L <{9},{1,4},{10}>
S ={5,6,8}

repeat (
S+ pop L
foreach (c€X) do (

R+ FollowLambda (FollowChar (§,c))

T[S][c] + R

if ([R|>0 AND TI[R]}] does not exist) then (

initialize row T[R][]
if (ANR#0) then (

Transition Table T

is Start is Accept State a b c d e f
Y N {0,4y © {10} (1,4} {568} 0 0
N Y {10}

N N {1,4}
N N {5,6,8) 0 {9} 0 0 0 {9}
N Y {9}

mark T[R][] as an accepting state of D

)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e
Y N {044 0 {10} {1,4} (56,8} 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{8},{1,4},{10}> N N {568 0 {99 0 0 0
S={9} N Y {9} 0 0 0 {9} {8}
N N {8}
repeat (
S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e
Y N {0,4y © {10} {1,4} {56,8 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}> N N {56,884 0 {9} 0 0 0
S={8} N Y {9} 0o 0 0 {9} {8}
N N @ 0 {9 0 0 0
repeat (
S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e f
Y N {04y 0 ({10} {14} {568 0 0

A= {9, 10} N Y {10}
i=0 N N {14 0 0 {4
Stack L <{2,6}, {4}, {10}> N N {5,6,84 0 {9} 0 0 0 {9}
S={1,4} N Y {9} 0o 0 0 {9} {8y 0
c=c N N 8 0 {99 0 0 0 0
R={4} N N {4
repeat (

S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

pop L and do it all again isStart isAccept State a b c d e f
Y N {04, 0 {10} {144 {568 0 0
A={9,10} N Y {10}
i=0 N N {14 0 0 {4} {5.6,8}
Stack L <{2,6},{4},{10}> N N {568y 0 {9} 0 0 0 {9
S=1{1,4} N Y o 0 0 0 {9} {8 0
c=d N N {8} 0 {9 0 0 0 0
R={5,6,8} N N {4}
repeat (
S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e f
Y N {0,4y © {10} {1,4} {5,6,8} 0 0

A={9,10} N Y {10}
i=0 N N 14 0 0 {4y {5,6,8 ({2,6}
Stack L <{2,6},{4},{10}> N N {568y 0 {94 0 0 0 {9
S={1,4} N Y {9} 0o 0 0 {9} {8} 0
c=e N N {8} 0 {9 0 0 0 0

_ N N {4}
R=1{2,6} N N (2,6}
repeat (

S+ pop L

foreach (c€X) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ([R|>0 AND TI[R]}] does not exist) then (
initialize row T[R][]
if (ANR#0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while (|L|>0)

NFA to DFA Algorithm Transition Table 7

is Start is Accept State a b c d e f
Y N {0,4} 0 {10y {1,4} {5,6,8} 0 0
A={9,10} N Y {10} {0,4} 0 0 0 {1} 0
i=0 N N {1,4} 0 0 {4y (56,8 {26} 0
Stack L <empty> N N {568 0 {9} 0 0 0 {9
N Y {9} 0 0 0 {9} {8} 0
N N {8} 0 {9} 0 0 0 0
N N {4} 0 0 {4y {5,6,8} 0 0
N N {2,6} {10} {3,10} 0 0 0 {9}
N Y {3,10} {0,4} 0 {7} 0 {1} 0
N N {7} {9} 0 0 {8} 0 0
N N {1} 0 0 0 0 {26} 0

When L is empty, the table T holds a DFA derived from the
original NFA.

