
Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer

memory?

Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer

memory?

An n×n Boolean matrix for λs, and a

state× c∈ Σ “transition table” whose cells

contain what?

Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer

memory?

An n×n Boolean matrix for λs, and a

state× c∈ Σ “transition table” whose cells

contain what?

ii. While matching a character sequence to an

NFA, what type of data structure must be used

to remember where in the NFA we are?

Why Don’t We Use NFAs during Scanning?

i. How can we represent an NFA in computer

memory?

An n×n Boolean matrix for λs, and a

state× c∈ Σ “transition table” whose cells

contain what?

ii. While matching a character sequence to an

NFA, what type of data structure must be used

to remember where in the NFA we are?

iii. Can we represent a DFA more efficiently?

iv. What data structure is required to remember

DFA matching state?

Why Don’t We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools

(in fact, all of which you will build in this course!). . .

c++comment-automated.pdf

https://cs.mcprogramming.com/static/comp/hr/58da6ee3f6b3adf2/c++comment-automated.pdf

NFA to DFA Algorithm
initialization

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure NFAtoDFA (N an NFA)

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure NFAtoDFA (N an NFA)

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

B← FollowLamda({i})

NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

procedure FollowLambda(S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <{0,4}>
B = {0,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure NFAtoDFA (N an NFA)

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

B← FollowLamda({i})

initialize row T [B][·]
mark T [B][·] as the starting state of D

if (A
⋂

B 6= /0) then (

mark T [B][·] as an accepting state of D

)

push B onto L

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
FollowChar

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

/0← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure FollowChar (S a ⊆ of NFA N states , c ∈ Σ)

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach (state t ∈ S) do (

foreach (c transition from t to state q) do (

add q to F

)

)

return F

NFA to DFA Algorithm
FollowLambda

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

/0← FollowLambda(/0)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4}

procedure FollowLambda(S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = a

R = /0

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = b

{10}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

procedure FollowChar (S a ⊆ of NFA N states , c ∈ Σ)

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach (state t ∈ S) do (

foreach (c transition from t to state q) do (

add q to F

)

)

return F

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <empty>

S = {0,4}
c = b

{10}← FollowLambda({10})

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0

procedure FollowLambda(S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = b

R = {10}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = c

{1,4}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

procedure FollowChar (S a ⊆ of NFA N states , c ∈ Σ)

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach (state t ∈ S) do (

foreach (c transition from t to state q) do (

add q to F

)

)

return F

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{10}>
S = {0,4}
c = c

{1,4}← FollowLambda({1,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10}

N Y {10}

procedure FollowLambda(S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = c

R = {1,4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = d

{5}← FollowChar(S,c)

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

procedure FollowChar (S a ⊆ of NFA N states , c ∈ Σ)

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach (state t ∈ S) do (

foreach (c transition from t to state q) do (

add q to F

)

)

return F

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {0,4}
c = d

{5,6,8}← FollowLambda({5})

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4}

N Y {10}

N N {1,4}

procedure FollowLambda(S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

NFA to DFA Algorithm
discover new state sets

A = {9,10}
i = 0

Stack L <{5,6,8},{1,4},{10}>
S = {0,4}
d = d

R = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8}

N Y {10}

N N {1,4}

N N {5,6,8}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
characters e and f yield /0

A = {9,10}
i = 0

Stack L <{5,6,8},{1,4},{10}>
S = {0,4}
c = f

R = /0

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{9},{1,4},{10}>
S = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{8},{1,4},{10}>
S = {9}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{1,4},{10}>
S = {8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = c

R = {4}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = d

R = {5,6,8}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4} {5,6,8}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm
pop L and do it all again

A = {9,10}
i = 0

Stack L <{2,6},{4},{10}>
S = {1,4}
c = e

R = {2,6}

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10}

N N {1,4} /0 /0 {4} {5,6,8} {2,6}

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4}

N N {2,6}
repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar (S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

NFA to DFA Algorithm

A = {9,10}
i = 0

Stack L <empty>

Transition Table T

is Start is Accept State a b c d e f

Y N {0,4} /0 {10} {1,4} {5,6,8} /0 /0

N Y {10} {0,4} /0 /0 /0 {1} /0

N N {1,4} /0 /0 {4} {5,6,8} {2,6} /0

N N {5,6,8} /0 {9} /0 /0 /0 {9}

N Y {9} /0 /0 /0 {9} {8} /0

N N {8} /0 {9} /0 /0 /0 /0

N N {4} /0 /0 {4} {5,6,8} /0 /0

N N {2,6} {10} {3,10} /0 /0 /0 {9}

N Y {3,10} {0,4} /0 {7} /0 {1} /0

N N {7} {9} /0 /0 {8} /0 /0

N N {1} /0 /0 /0 /0 {2,6} /0

When L is empty, the table T holds a DFA derived from the

original NFA.

Original NFA

Equivilant DFA

