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. How can we represent an NFA in computer

memory?

An n x n Boolean matrix for As, and a
state X ¢ € X “transition table” whose cells
contain what?

While matching a character sequence to an
NFA, what type of data structure must be used
to remember where in the NFA we are?

Can we represent a DFA more efficiently?

What data structure is required to remember
DFA matching state?



Why Don’t We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools
(in fact, all of which you will build in this coursel). ..

:

(RO

ct+comment-automated.pdf


https://cs.mcprogramming.com/static/comp/hr/58da6ee3f6b3adf2/c++comment-automated.pdf

NFA to DFA Algorithm _ _ Transition Table 7
initialization isStart isAccept State a b c¢ d

A={9,10}
i=0
Stack L <empty>

procedure NFAtoDFA( N an NFA )
Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of

states from N, each T[]lcol] uniquely identifies
a character c€ZX.

let L be an empty stack

let A be the set of accepting states for N
let i be the starting state of N




NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
A=1{9,10}
i=0

Stack L <empty>

procedure NFAtoDFA( N an NFA )

Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of
states from N, each T[]lcol] uniquely identifies

a character c€ZX.

let L be an empty stack

let A be the set of accepting states for N
let i be the starting state of N

B+ FollowLamda ( {t} )




NFA to DFA Algorithm _ _Transition Table 7
FollowLambda isStart isAccept State a b ¢ d e f

A={9,10}
i=0
Stack L <empty>

procedure FollowLambda( § a C of NFA N states )
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach ( state r€S ) push ¢t onto M
while ( [M|>0 ) do (
t< pop M
foreach ( A transition from f to state g ) do (
if ( g¢S ) then (
add g to S
push g onto M

)
)
return §




NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
Y N {0,4}
A=1{9,10}
i=0
Stack L <{0,4}>
B={0,4}

procedure NFAtoDFA( N an NFA )

Let T[row][col] be an empty transition table defining
D. T[row][] is uniquely identified by a set of
states from N, each T[]lcol] uniquely identifies

a character c€ZX.

let L be an empty stack
let A be the set of accepting states for N
let i be the starting state of N
B+ FollowLamda ( {t} )
initialize row T[B|[]
mark T[B][:] as the starting state of D
if (A(NB#0 ) then (
mark T[B][] as an accepting state of D
)
push B onto L




NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b ¢ d e f
Y N {0,4}
A={9,10}
i=0
Stack L <empty>
§=4{0,4}
c=a
repeat (

S+ pop L
foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

FollowChar isStart isAccept State a b ¢ d e f
Y N {0,4}

A=1{9,10}

i=0

Stack L <empty>

§={0,4}

c=a

0 <+ FollowChar(S,c¢)

procedure FollowChar ( § a C of NFA N states, c€X )

returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach ( state r€S ) do (
foreach ( ¢ transition from r to state ¢ ) do (
add g to F
)

return F




NFA to DFA Algorithm Transition Table T

FollowLambda isStart isAccept State a b ¢ d e f
Y N {0,4}

A={9,10}

i=0

Stack L <empty>

§={0,4}

c=a

0 < FollowLambda(0)

procedure FollowLambda( § a C of NFA N states )
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach ( state r€S ) push ¢t onto M
while ( [M|>0 ) do (
t< pop M
foreach ( A transition from f to state g ) do (
if ( g¢S ) then (
add g to S
push g onto M
)
)
)
return §




NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {04 0

A={9,10}
i=0

Stack L <empty>
§=4{0,4}

c=a

R=0

repeat (
S+ pop L
foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {04 0

A=1{9,10}

i=0

Stack L <empty>

S =1{0,4}

c=b

{10} « FollowChar(S,c)

procedure FollowChar ( § a C of NFA N states, c€X )
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach ( state r€S ) do (
foreach ( ¢ transition from r to state ¢ ) do (
add g to F
)

return F




NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04} 0

A={9,10}

i=0

Stack L <empty>

§={0,4}

c=b

{10} < FollowLambda({10})

procedure FollowLambda( § a C of NFA N states )
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach ( state r€S ) push ¢t onto M
while ( [M|>0 ) do (
t< pop M
foreach ( A transition from f to state g ) do (
if ( g¢S ) then (
add g to S
push g onto M
)
)
)
return §




NFA to DFA Algorithm _ _ Transition Table 7
discover new state sets isStart isAccept State a b ¢ d e f

Y N {0,4f 0 {10}
A=1{9,10} N % {10}
i=0
Stack L <{10}>
§=4{0,4}
c=b
R=1{10}

repeat (
S+ pop L
foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T’

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04y 0 {10}

A=1{9,10} N Y {10}

i=0

Stack L <{10}>

S ={0,4}

c=c

{1,4} < FollowChar(S,c)

procedure FollowChar ( § a C of NFA N states, c€X )
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach ( state r€S ) do (
foreach ( ¢ transition from r to state ¢ ) do (
add g to F
)
)

return F




NFA to DFA Algorithm Transition Table T’

discover new state sets isStart isAccept State a b ¢ d e f
Y N {04, 0 {10}

A={9,10} N Y {10}

i=0

Stack L <{10}>

S =1{0,4}

c=c¢

{1,4} « FollowLambda({1,4}

procedure FollowLambda( § a C of NFA N states )
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach ( state r€S ) push ¢t onto M
while ( [M|>0 ) do (
t< pop M
foreach ( A transition from f to state g ) do (
if ( g¢S ) then (
add g to S
push g onto M
)
)
)
return §




NFA to DFA Algorithm Transition Table T

discover new state sets is Start is Accept State a b c d e f
Y N 04 0 {10} {1,4}
A={9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
§=4{0,4}
c=¢
R=1{1,4}
repeat (
S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

discover new state sets is Start isAccept State a b c d e f
Y N {04 0 {10} {1,4
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
§={0,4}
c=d

{5} « FollowChar(S,c)

procedure FollowChar ( § a C of NFA N states, c€X )
returns the set of NFA states obtained from following
all ¢ transitions from states in §

Let F be an empty set
foreach ( state r€S ) do (
foreach ( ¢ transition from r to state ¢ ) do (
add g to F
)
)

return F




NFA to DFA Algorithm Transition Table T

discover new state sets isStart isAccept State a b c d e f
Y N {04 0 ({10} {1,4}
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}>
S =1{0,4}
c=d

{5,6,8} + FollowLambda({5})

procedure FollowLambda( § a C of NFA N states )
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach ( state t€S ) push tr onto M
while ( [M|>0 ) do (
t< pop M
foreach ( A transition from f to state g ) do (
if ( g¢S ) then (
add g to S
push g onto M
)
)
)
return §




NFA to DFA Algorithm Transition Table T

discover new state sets is Start isAccept State a b c d e f
Y N {04y 0 {10} {14} {568}
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{5,6,8},{1,4},{10}> N N {5.6,8}
§={0,4}
d=d
R={5,6,8}
repeat (

S+ pop L
foreach ( c€X ) do (
R+ FollowLambda (FollowChar (§,c))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

characters e and f yield 0 is Start is Accept State a b c d e f
Y N {04y 0 {10} {1,4 {568 0 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{5,6,8},{1,4},{10}> N N {5.6,8}
§=4{0,4}
c=f
R=0
repeat (

S+ pop L
foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm
pop L and do it all again

A={9,10}

i=0

Stack L <{9},{1,4},{10}>
S ={5,6,8}

repeat (
S+ pop L
foreach ( c€X ) do (

R+ FollowLambda (FollowChar (§,c))

T[S][c] + R

if ( [R|>0 AND TI[R]}] does not exist ) then (

initialize row T[R][]
if (ANR#0 ) then (

Transition Table T

is Start is Accept State a b c d e f
Y N {0,4y © {10} (1,4} {568} 0 0
N Y {10}

N N {1,4}
N N {5,6,8) 0 {9} 0 0 0 {9}
N Y {9}

mark T[R][] as an accepting state of D

)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e
Y N {044 0 {10} {1,4} (56,8} 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{8},{1,4},{10}> N N {568 0 {99 0 0 0
S={9} N Y {9} 0 0 0 {9} {8}
N N {8}
repeat (
S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e
Y N {0,4y © {10} {1,4} {56,8 0
A=1{9,10} N Y {10}
i=0 N N {1,4}
Stack L <{1,4},{10}> N N {56,884 0 {9} 0 0 0
S={8} N Y {9} 0o 0 0 {9} {8}
N N @ 0 {9 0 0 0
repeat (
S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e f
Y N {04y 0 ({10} {14} {568 0 0

A= {9, 10} N Y {10}
i=0 N N {14 0 0 {4
Stack L <{2,6}, {4}, {10}> N N {5,6,84 0 {9} 0 0 0 {9}
S={1,4} N Y {9} 0o 0 0 {9} {8y 0
c=c N N 8 0 {99 0 0 0 0
R={4} N N {4
repeat (

S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

pop L and do it all again isStart isAccept State a b c d e f
Y N {04, 0 {10} {144 {568 0 0
A={9,10} N Y {10}
i=0 N N {14 0 0 {4} {5.6,8}
Stack L <{2,6},{4},{10}> N N {568y 0 {9} 0 0 0 {9
S=1{1,4} N Y o 0 0 0 {9} {8 0
c=d N N {8} 0 {9 0 0 0 0
R={5,6,8} N N {4}
repeat (
S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table T

pop L and do it all again is Start is Accept State a b c d e f
Y N {0,4y © {10} {1,4} {5,6,8} 0 0

A={9,10} N Y {10}
i=0 N N 14 0 0 {4y {5,6,8 ({2,6}
Stack L <{2,6},{4},{10}> N N {568y 0 {94 0 0 0 {9
S={1,4} N Y {9} 0o 0 0 {9} {8} 0
c=e N N {8} 0 {9 0 0 0 0

_ N N {4}
R=1{2,6} N N (2,6}
repeat (

S+ pop L

foreach ( c€X ) do (
R+ FollowLambda (FollowChar (S,c¢))
T[S][c] + R
if ( [R|>0 AND TI[R]}] does not exist ) then (
initialize row T[R][]
if (ANR#0 ) then (
mark T[R][] as an accepting state of D
)
push R onto L
)
)
) while ( |L|>0)




NFA to DFA Algorithm Transition Table 7

is Start is Accept State a b c d e f
Y N {0,4} 0 {10y {1,4} {5,6,8} 0 0
A={9,10} N Y {10}  {0,4} 0 0 0 {1} 0
i=0 N N {1,4} 0 0 {4y (56,8 {26} 0
Stack L <empty> N N {568 0 {9} 0 0 0 {9
N Y {9} 0 0 0 {9} {8} 0
N N {8} 0 {9} 0 0 0 0
N N {4} 0 0 {4y {5,6,8} 0 0
N N {2,6} {10} {3,10} 0 0 0 {9}
N Y {3,10}  {0,4} 0 {7} 0 {1} 0
N N {7} {9} 0 0 {8} 0 0
N N {1} 0 0 0 0 {26} 0

When L is empty, the table T holds a DFA derived from the
original NFA.






