What is an Optimal DFA?

If DFA D has n states and accepts the set of strings M from the alphabet X, and if there
does not exist an equivilant DFA D’ with n’ < n states, then D is optimal and unique.

EQUIVILANT DFA: D’ accepts only M.

Why does “optimal’’ matter?

We are less concerned about number of transitions in a DFA than the the number of
states. Why?

Why does “optimal’’ matter?

We are less concerned about number of transitions in a DFA than the the number of
states. Why?

The canonical representation of a DFA in computer memory is the transition table
Tstate][char] (you have been reading along, yes?).

You can’t make a state row smaller, it must be able to represent a transition for every
character in £ — A state with 1 transition consumes as much memory as a state with |X|
transitions.

The only way to decrease the memory footprint of 7'[-][-] is to decrease the number of
states. If the alphabet is large (|| large), this can be a substantial memory savings.

State a b ¢ g r s tuv
— 0 e © o6 o o o 0 o
1 e o o o o o ¢ 19
2 e © o o o o 1 o
3 e o o ¢ 3 2 000
4 e o o o o o 020
5 o © o o o o 4 o
6 e o o o o 5 022
7 e © ¢ o 3 2 e @
8 e ¢ ¢ 8 7 e 6 o
9 o ¢ o o o o 023
10 e © o o o o 9 e
11 o o o o 1110 e o
12 o o o ¢ 11100 o
13 o o o 1312 o o o
14 e o o 8 7 @6 o
15 o o 141312 o o o
16 e 15 06 o © o 0 o
17 16 ¢ ¢ © o o o o
©® 18 e ©¢ o o o o 018
© 19 e © o o o o 018
© 20 e 6 o o o o o0 o
© 21 e o o o o o o221
© 22 e © o o o o o021
© 23 e 6 o o o o 0o o

Merging DFA States — initialize
SetM =0

stack =< (O . (ESINES).) >

procedure MergeStates(accepts DFA D defined by
transition table T[][])
returns a potentially new T[][]

Tlrow][:] uniquely identifies one state of D, and
each T[r][c] identifies the unique transition from
state r to state T[r][c] on input character c€X.

let M be an empty set

let L be an empty stack

push ({accepting states of D},X) onto L
push ({non-accepting states of D},X) onto L

State a b ¢ g r s tuv
— 0 17 @ e o o o o o o
1 e o o o o o o 019

2 e o o o o o o 1 o

3 e o 0 o o 3 2 0 0

4 e o o o o o o 020

5 e o © o o o o 4 o

6 o o o o o o 5 22

7 e o o o o 3 2 e @

8 e o ©¢ ¢ 8 7 e 6 e

9 e o o o o o o 023

10 o © ©¢ © o © e 9 o

11 o o o o o 1110 e @

12 o o o o o 1110 e @

13 o o o o 1312 o o o

14 o o o © 8 7 e 6 o

15 e o o 141312 o o o

16 o o 15 ¢ o o e o o

17 o 16 ¢ o o o o o o

© 18 e o o o o o o 18
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — S,C <— pop L

SetM =0
Stack L =< ({18,19,...,23},X) >
§={0,1,...,17} C=x%
repeat (
S,C+ pop L

remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 e © o6 o o o 0 o
1 e o o o o o ¢ 19
2 e © o o o o 1 o
3 e o o ¢ 3 2 000
4 e o o o o o 020
5 o © o o o o 4 o
6 e o o o o 5 022
7 e © ¢ o 3 2 e @
8 e ¢ ¢ 8 7 e 6 o
9 o ¢ o o o o 023
10 e © o o o o 9 e
11 o o o o 1110 e o
12 o o o ¢ 11100 o
13 o o o 1312 o o o
14 e o o 8 7 @6 o
15 o o 141312 o o o
16 e 15 06 o © o 0 o
17 16 ¢ ¢ © o o o o
© 18 e o o o o o o 18
© 19 e o o o o o o ¢ 18
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — partition by a

SetM =0

Stack L =< ({18,19,...,23},X) >
s={0,1,...,17} C={bcarstuyv} c=a
X =

X, =

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 e © o6 o o o 0 o
1 e o o o o o ¢ 19
2 e © o o o o 1 o
3 e o o ¢ 3 2 000
4 e o o o o o 020
5 o © o o o o 4 o
6 e o o o o 5 022
7 e © ¢ o 3 2 e @
8 e ¢ ¢ 8 7 e 6 o
9 o ¢ o o o o 023
10 e © o o o o 9 e
11 o o o o 1110 e o
12 o o o ¢ 11100 o
13 o o o 1312 o o o
14 e o o 8 7 @6 o
15 o o 141312 o o o
16 e 15 06 o © o 0 o
17 16 ¢ ¢ © o o o o
© 18 e o o o o o o 18
© 19 e o o o o o o ¢ 18
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — push {X;,C} back to L

SetM =10
Stack L =< (-,{b,c,q,r,s,t,u,v}),({18, 19,...,23},%) >

Where did the X; = {0} go?

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 @ e o o o o o o
1 oo o o o o o 019

2 e ® o o o o o 1 o

3 e 8 o o o 3 2 0 0

4 e ® o o o o o 020

5 e ® o o o o o 4 o

6 o ® e o o o 5 22

7 e ® o o o 3 2 e o

8 e ® o o 8 7 e 6 e

9 o ® o o o o o 023

10 e /® ©¢ © o © o 9 o

11 e/® o o o 1110 e @

12 oo o o o 1110 e o

13 eo/e® e o 1312 o o o

14 eo/® o © 8 7 e 6 o

15 ef[® e 141312 o o o

16 o /®@ 15 ¢ o o e o o

17 o 16/ e o o o o o o

© 18 e o o o o o o 18
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — partition by b

SetM =0

Stack L =< ({18,19,...,23},X) >
§={1,2,...,17} C={carstuv} c=b
X, = {6

X = {17}

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 @ e o o o o o o
1 oo o o o o o 019

2 e ® o o o o o 1 o

3 e 8 o o o 3 2 0 0

4 e ® o o o o o 020

5 e ® o o o o o 4 o

6 e ® o o o o 5 022

7 e ® o o o 3 2 e o

8 eo/® o o 8 7 e 6 o

9 o ® o o o o o 023

10 e /® e o o o e 9 o

11 e/® o o o 1110 e @

12 e o o o o 1110 e @

13 eo/e® e o 1312 o o o

14 eo[® o o 8 7 e 6 o

15 ef[® e 141312 o o o

16 o /®@ 15 ¢ o o e o o

17 o 16/ e o o o o o o

© 18 e o o o o o o 018
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o o221
© 23 e o o o o o o o o

Merging DFA States — push {X;,C} back to L

SetM =0
Stack L =< ({1,...,16} ,{c,a.r.s,t,u,v}),({18,19,...,23},%) >

X, = {17} discarded by |X;| > 1 conditional.

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X2,X3,..., Xk
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 o o o o o o o o
1 e o|® o o o o 019

2 e o0 o o o o 1 o

3 e o 0 o o 3 2 0 0

4 e o/® o o o o 020

5 e o|® o o o ¢ 4 o

6 o o o o o o 5 22

7 e o @ o o 3 2 e o

8 e o/® o 8 7 e 6 o

9 e o 0 o o o o 023

10 e o ®© o o o e J e

11 o oo o o 1110 e @

12 o oo o o 1110 e o

13 o o/® o 1312 o o o

14 o o o o 8 7 e 6 o

15 o oo Jl1312 o o o

16 o o115 ¢ o o o o o

17 o 16 @ o o o o o o

© 18 e o o o o o o 018
© 19 e o o o o o o 018
© 20 o o o o o o o 0o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o 0 o

Merging DFA States — after c, g partitioning

SetM =0
Stack L=< ({1,2,...,14} , {rs,t,uv}),({18,19,...,23},%) >

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 o o o o o o o o
1 e o o o9 e o 019

2 e o o o 9 o o 1 o

3 e o o o 0 3 2 e 00

4 e o o oo o o 020

5 e o o o9 o o 4 o

6 e o o o o o 5 022

7 e o o o9 3 2 e o

8 e o o 0/8 7 e 6 o

9 e o o o o o o 023

10 o o ©¢ o @ o e O o

11 e o o o9 1110 e @

12 o o o o 0 1110 e @

13 o o o o 1312 o o o

14 o o o o[8|7 e 6 o

15 e o o 141312 o o o

16 o o 15 ¢ © o o o o

17 o 16 ¢ o o o o o o

© 18 e o o o o o o 18
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — partition by r

SetM =0

Stack L =< ({18,19,...,23},X) >
§={1,2,...,14} C={stuyv} c=r
X = {1,...,7,9,...,12}

X, = {814} X;= {13}

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 o e o o o o o o
1 e o o o e o o 19

2 e o o o e o 1 @

3 e o o o 3 2 e @

4 e o o o e o 020

5 e o o o e o 4 o

6 o o o o e 5 o022

7 e o o o 3 2 e @

8 e o o o 7 e 6 @

9 o o o o e o o023

10 o o o o e e O e

11 o o o o 1110 e o

12 o o o o 1110 e o

13 o o o o 1312 @ o @

14 o o o o - 7 e 6 e

15 e o o 141312 o o o

16 o o 15 ¢ © o o o o

17 o 16 ¢ ¢ © o o o @

© 18 e o o o o o o 18
© 19 e o o o o o o ¢ 18
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — push {X;,C} back to L

SetM =0
A4, {s.tuv)), (SETONTIRE, {stuv)),

Stack L =< (
({18,19,...,23},5) >

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b cgr s tuv
— 0 17 o e ©¢ ¢ o o o o
1 e o o 0o 0 o o 019

2 e o o 0o 0 o o 1 @

3 e o o006 3 2 e 00

4 e o e 0o 0 o o 020

5 e © o o0 o o0 4 o

6 e o 0o 0 0 o 5 022

7 e o o o0 3 2 e @
8 e e 0037 eb6e
9 e o 0o 0 0 o o 023

10 o © e e o o o 9 o

11 o o o o0 1110 e @

12 o o e o 0 11100 o

13 o o o 1312 o o @

15 e o ¢ 81312 o o o

16 o © 150 o o o o @

17 o 16 ©e e ¢ o o o @

© 18 o o o e o o o o 18
© 19 e o e e ¢ o o 18
© 20 e o o e o o o o o
© 21 e o o e o o o o021
© 22 e o e e 0o o o 021
© 23 e o e e o o o o o

Merging DFA States — M grows!

Set M = {{{8,14} }

Stack L=< ({1,...,7,9,...,12},{s,t,uv}),
({18,19,...,23},%) >

State set {8, 14} was the top of the stack, with no other

character transition differences. It will be added to M after

character v partitioning (C = 0)

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 @ e o o o o o o
1 e o o o o0 o 019

2 e o o o o o o 1 o

3 e o 0 o 0 3 2 e o

4 e o o o o 0 o 020

5 e o © o o 0 o 4 o

6 o o o o o ® 5 22

7 e o o o 0/3 2 e o

8 e o ©¢ ¢ 8 7 e 6 e

9 o o o o o e 023

10 o © ©¢ © o ® e 9 o

11 o o o o o 11 10 e @

12 o o o o o 1110 e o

13 o o o o 1312 o o o

14 o o o © 8 7 e 6 o

15 e o o 141312 o o o

16 o o 15 ¢ o o e o o

17 o 16 ¢ o o o o o o

© 18 e o o o o o o 18
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — partition by s

SetM = {{8,14}}

Stack L =< ({18,19,...,23},X) >
S={1,...,7,9,...,12} C={tuv} c=s
X = {1,2,4,5,6,9,10}

X =874 X3= {1112
repeat (
S,C+ pop L

remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 @ e o o o o o o
1 e o o o o0 o 019

2 e o o o o o o 1 o

3 e o 0 o 0 3 2 e o

4 e o o o o 0 o 020

5 e o © o o 0 o 4 o

6 o o o o o ® 5 22

7 e o o o 03 2 e o

8 e o ©¢ ¢ 8 7 e 6 e

9 o o o o o e 023

10 o © ©¢ © o ® e 9 o

11 o o o o o 11 10 e @

12 o o o o o 1110 e o

13 o o o o 1312 o o o

14 o o o o 8 7 e 6 o

15 e o o 141312 o o o

16 o o 15 ¢ o o e o o

17 o 16 ¢ o o o o o o

© 18 e o o o o o o 18
© 19 e o o o o o o 018
© 20 o o © o o o o o o
© 21 e o o o o o o o 21
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — push {X;,C} back to L

SetM = {{8,14}}
Stack L=< ({11,12} , {t,u,v}), ({87}, {t,u,v}),
({2/4556,9,10}, {t.uv}),({18,19,...,23},%) >

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X0,X3,..., Xy
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

State a b ¢ g r s tuv
— 0 17 o e o o o o o o
1 e o o o o o o 019
2 e o o o o o o 1 o
4 e o o o o o o 020
5 e © o o o o o 4 o
6 e o o o o o 5 022
7 e s e s 0 3 200
8 e o o ¢ 8 7 e 6 o
O e o o o o o o 23
10 o © ©¢ © o o o J o
13 o o o o 1312 @ o @
14 o o o ¢ 8 7 e 6 @
15 e o o 141312 o o o
16 o o 15 ¢ © o o o o
17 o 16 ¢ ¢ © o o o @
© 18 e o o o o o o 18
© 19 e o o o o o o ¢ 18
© 20 o o © o o o o o o
© 21 o o o o o o o 021
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — M grows!

Set M = {{8,14}, {i1:12}, [{8.7}

Stack L =< ({1,2,4,5,6,9,10} , {t.uv}), ({18,19,...,23},5) >

State sets {11,12} and {3,7} were on the top of the stack
and neither had any other character transition differences.
They will be added to M after character v partitioning
C=0

The state set {1,2,4,5,6,9,10} has no other similarities
over the characters {t,u,v}.

T[6][t] = 5 will discard state 6, T[2][u] # T[5][u] # T[10][u]
will discard states 2, 5 and 10, and

T[1][v] # T[4][v] # T[9][v] will discard the remaining states.

State a b ¢ g r s tuv
— 0 17 o e o o o o o o
1 e o o o o o o 019
2 e o o o o o o 1 o
4 e o o o o o o 020
5 e © o o o o o 4 o
6 e o o o o o 5 022
7 e s e s 0 3 200
8 e o o ¢ 8 7 e 6 o
O e o o o o o o 23
10 o © ©¢ © o o o J o
13 o o o o 1312 @ o @
14 o o o ¢ 8 7 e 6 @
15 e o o 141312 o o o
16 o o 15 ¢ © o o o o
17 o 16 ¢ ¢ © o o o @
© 18 e o o o o o o 18
© 19 e o o o o o o ¢ 18
© 20 o o © o o o o o o
© 21 o o o o o o o 021
© 22 e o o o o o o 021
© 23 e o o o o o o o o

Merging DFA States — M grows!

Set M = {{8,14}, {i1:12}, [{8.7}

Stack L =< ({1,2,4,5,6,9,10} , {t.uv}), ({18,19,...,23},5) >

State sets {11,12} and {3,7} were on the top of the stack
and neither had any other character transition differences.
They will be added to M after character v partitioning
C=0

The state set {1,2,4,5,6,9,10} has no other similarities
over the characters {t,u,v}.

T[6][t] = 5 will discard state 6, T[2][u] # T[5][u] # T[10][u]
will discard states 2, 5 and 10, and

T[1][v] # T[4][v] # T[9][v] will discard the remaining states.

Can we predict how the accepting state set in L will
alter M?

State a b ¢ g r s tuv
— 0 17 o e o o o o o o
1 e o o o o o o 019

2 e o o o o o o 1 o

3 e o 0 o o 3 2 0 0

4 e o o o o o o 020

5 e ©o o o o o o 4 o

6 e o o o o o 5 022

7 e o o o o 3 2 e o

8 e o o ¢ 8 7 e 6 @

9 e o o o o o o 023

10 o ©¢ © ©¢ o o o O o

11 o o o o o 1110 e o

12 o o o o o 1110 e @

13 o o o o 1312 @ o @

14 o o o ¢ 8 7 e 6 @

15 e o o 141312 o o o

16 o o 15 @ e e o o

17 o 16 o o e o o o

© 21 e ° e o o 21
© 22 e ° e o o 21

Merging DFA States — |[L| =0

Set M = {{8,14}, {11,12},{3,7}, {18,198}, {20,28}], {21,22}}

Stack L =< empty >

repeat (
S,C+ pop L
remove an element ¢ from C
Partition states s in § by TJ[s][c] into sets
X1,X2, X3, .., Xk
foreach (X; of X1,X7,X3,...,Xx with |Xj/>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while (|L|>0)

o<

-
©

® 06 06 06 06 06 0 0O
® ®© 0 0 0 0 0 0O
® © 06 0 0 0 0 0 —
wWwe e e e 0
NDOTre eNDe o o —
e e o O — 0 0|C

N N
LN AN

EEEE
EEEE
e 000
NlZee

oo e
e e e ©e
oo o0 o3

—_
()]
[)
[]
—_
w
—_
N

—_

—_
—_ o 0o

NEEEEREE
EEEEEE
EEEEEEREE
EEEEEEX
TR EEEREE
EEEEEEEE
o VN4

@POOOO

Merging DFA States — Merge Rows 8§ and 14
setM = {{@H4Y, {11,12}, {3,7},{18,19},{20,23},{21,22}}

Stack L =< empty >

s = Sl

Remove row 14, change 14s to 8s in cells.

foreach (SeM) do (
merge rows of T[][] identified by states in S,
fixing up transitions to these states as well!
if (starting state of D€E€S) then (
mark the newly merged row as the
starting state of D
)

EEEEEEEEEXIN
e e Ve o0 oo 0 0 0~
e e NWeoeewWe o on
eeoeUIe O @ o~
Ceneere e —o ocC
eNeoeNeNe e Je<

—_

® 06 06 06 06 0 0 06

—_
w

EEEEEREEEX
-
cee oo e
o0 0000 0
EEEEEEE
EEEEEEE
EEEEEREEEX)
eNNe e e e

@POOOO

Merging DFA States — Merge Rows 11 and 12
Set M = {{8,14}, [{i112}, {3,7},{18,19},{20,23},{21,22}}

Stack L =< empty >

Remove row 12, change 12s to 11sin cells.

foreach (SeM) do (
merge rows of T[][] identified by states in S,
fixing up transitions to these states as well!
if (starting state of D€E€S) then (
mark the newly merged row as the
starting state of D
)

State a b cgr s tuv
— 0 17 o e ©¢ ¢ o o o o
1 e o o 0o 0 o o 019

2 e o o 0o 0 o o 1 @
3 e e 000 3 200
4 e o o 0o 0 ¢ o o020

5 e © o o0 o o0 4 o

6 e o 0o 0 0 o 5 022

8 e o o ¢ 8 III e 6 o

9 e o o0 0 o o 023

10 o © e e o o o 9 o

11 o o o o0 1110 e @
13 o o o 1311 o o @
15 e o ¢ 81311 o o @
16 o © 150 o o o o @

17 o 16 ©e e ¢ o o o @

© 18 o o o e o o o o 18
© 19 e o e e ¢ o o 18
© 20 e o o e o o o o o
© 21 e o o e o o o o021
© 22 e o e e 0o o o 021
© 23 e o e e o o o o o

Merging DFA States — Merge Rows 3 and 7
Set M = {{8,14}, {11,12}, {87}, {18,19},{20,23},{21,22}}

Stack L =< empty >

s =@

Remove row 7, change 7s to 3s in cells.

foreach (SeM) do (
merge rows of T[][] identified by states in S,
fixing up transitions to these states as well!
if (starting state of D€E€S) then (
mark the newly merged row as the
starting state of D
)

State a b cgr s tuv
— 0 17 o e ©¢ ¢ o o o o
1 e o 0o 00 o o oIII

2 e o o 0o 0 o o 1 @

3 e o o006 3 2 e 00

4 e o e 0o 0 o o 020

5 e © o o0 o o0 4 o

6 e o 0o 0 0 o 5 022

8 e ¢ e 08 3 e6G e

9 e o o0 0 o o 023

10 o © e e o o o 9 o

11 o o o o0 1110 e @

13 o o o 1311 o o @

15 e o ¢ 81311 o o @

16 o © 1506 ¢ o o o o

17 o 16 ©e e ¢ o o o @

© 21 e o o e o o o o021
© 22 e o e e 0o o o 021
© 23 e o e e o o o o o

Merging DFA States — Merge Rows 18 and 19
Set M = {{8,14}, {11,12}, {3,7}, {1818}, {20,23},{21,22}}

Stack L =< empty >

s = {IEE]

Remove row 19, change 19s to 18s in cells.

foreach (SeM) do (
merge rows of T[][] identified by states in S,
fixing up transitions to these states as well!
if (starting state of D€E€S) then (
mark the newly merged row as the
starting state of D
)

State a b cgr s tuv
— 0 17 o e e ¢ o o o o
1 e o o 0o 0 o o 018

2 e o o 0o 0 o o 1 @

3 e o o006 3 2 e 00
4 e s see e 0
5 e ©o o o0 o o 4 o

6 o o o0 0 o 5 021

8 e ¢ e 08 3 e6G e

e © o o0 o o 9
o o o o0 1110 @

—_
)

13 e o o o 13 11

15 e o ¢ 81311 o @
16 o o 150 ¢ o o o
17 o 16 ©e e ¢ o o @

Merging DFA States — ... so on and so forth.

SetM = {{8,14},{11,12},{3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

foreach (SeM) do (
merge rows of T[][] identified by states in S,
fixing up transitions to these states as well!
if (starting state of D€S) then (
mark the newly merged row as the
starting state of D
)
)
return T[][]

State a b
17 o
[]
[]
[]

1

wN =

e 0 o

® 6 06 0O

® 06 0 0O

® 0 0 o —

we e e wm

nNDe o of —+

e — 0 o |C
—

®°

o O,
[)
[)
[
[]
[)
[)
[I
o

N
—_

[]
[]
®
®
[]
[]
o e

8 e ¢ e 08 3 e6G e
9 e e e 0 00
10 o ©¢ e e o o o 9 o
11 o o o o0 1110 e @
13 o o © ¢1311 o o @
15 e o ¢ 81311 o o @
16 o © 1506 ¢ o o o o
17 o 16 ©e e ¢ o o o @

Merging DFA States — ... not done yet

SetM = {{8,14},{11,12},{3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

Consider states 4 and 9, these can now be merged!

Also notice that states 18 and 21 could actually be
considered identical, because they both transition back onto
themselves.

We correct the first issue by running the MergeStates
algorithm on a DFA until the number of states does not
change.

The second issue could be addressed by more complicated
algorithms, but we won'’t pursue these in this course.

MergeStates until |D| does not change

Let DFA D be defined by transition table T[][].
T[row][:] uniquely identifies one state of D, and
each T[r][c] identifies the unique transition from
state r to state TJ[r][c] on input character c€X.
repeat (

T'<+ MergeStates(T)

if (|T|=|T'|) then (

break loop
) else (
T+T'
)
)
T'[][[] is now a well (near?) optimized DFA equivalent

to D with a reasonable number of effective states.
(Dead or unreachable states may still exist.)

Dead and Unreachable Stages

Unreachable States do not have a transition path
from the starting state

Dead States do not have a transition path to an
accepting state.

Which states in this DFA are of what type?

Dead and Unreachable Stages

t

[y

Unreachable States do not have a transition path s e

from the starting state

Dead States do not have a transition path to an
accepting state.

Which states in this DFA are of what type?
B means both dead and unreachable!

Algorithms for pruning out dead and unreachable
states are left as an exercise (NFAMATCH).

What are equivilant DFA states?

Define in your own (group) terms. ..

What are equivilant DFA states?

Define in your own (group) terms. ..

Two identical rows of the DFA T [state][char] table with the same accepting
attribute value.

