
What is an Optimal DFA?

If DFA D has n states and accepts the set of strings M from the alphabet Σ, and if there

does not exist an equivilant DFA D′ with n′ < n states, then D is optimal and unique.

EQUIVILANT DFA: D′ accepts only M.

Why does “optimal” matter?

We are less concerned about number of transitions in a DFA than the the number of

states. Why?

Why does “optimal” matter?

We are less concerned about number of transitions in a DFA than the the number of

states. Why?

The canonical representation of a DFA in computer memory is the transition table

T [state][char] (you have been reading along, yes?).

You can’t make a state row smaller, it must be able to represent a transition for every

character in Σ — A state with 1 transition consumes as much memory as a state with |Σ|
transitions.

The only way to decrease the memory footprint of T [·][·] is to decrease the number of

states. If the alphabet is large (|Σ| large), this can be a substantial memory savings.

Merging DFA States — initializeState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({0,1,. . . ,17} ,Σ), ({18,19,. . . ,23} ,Σ)>

procedure MergeStates(accepts DFA D defined by

transition table T [·][·])

returns a potentially new T [·][·]

T [row][·] uniquely identifies one state of D, and

each T [r][c] identifies the unique transition from

state r to state T [r][c] on input character c ∈ Σ.

let M be an empty set

let L be an empty stack

push ({accepting states of D},Σ) onto L

push ({non-accepting states of D},Σ) onto L

Merging DFA States — S,C← pop LState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({18,19, . . . ,23},Σ)>
S = {0,1, . . . ,17} C = Σ

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — partition by aState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({18,19, . . . ,23},Σ)>
S = {0,1, . . . ,17} C = {b,c,q,r,s,t,u,v} c = a

X1 = {0}

X2 = {1,. . . ,17}

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — push {Xi,C} back to LState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({1,. . . ,17} ,{b,c,q,r,s,t,u,v}),({18,19, . . . ,23},Σ)>

Where did the X1 = {0} go?

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — partition by bState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({18,19, . . . ,23},Σ)>
S = {1,2, . . . ,17} C = {c,q,r,s,t,u,v} c = b

X1 = {1,. . . ,16}

X2 = {17}

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — push {Xi,C} back to LState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({1,. . . ,16} ,{c,q,r,s,t,u,v}),({18,19, . . . ,23},Σ)>

X2 = {17} discarded by |Xi|> 1 conditional.

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — after c, q partitioningState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({1,2,. . . ,14} ,{r,s,t,u,v}),({18,19, . . . ,23},Σ)>

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — partition by rState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({18,19, . . . ,23},Σ)>
S = {1,2, . . . ,14} C = {s,t,u,v} c = r

X1 = {1,. . . ,7,9,. . . ,12}

X2 = {8,14} X3 = {13}

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — push {Xi,C} back to LState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = /0

Stack L =< ({8,14} ,{s,t,u,v}),({1,. . . ,7,9,. . . ,12} ,{s,t,u,v}),
({18,19, . . . ,23},Σ)>

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — M grows!State a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 8 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = { {8,14} }
Stack L =< ({1, . . . ,7,9, . . . ,12},{s,t,u,v}),

({18,19, . . . ,23},Σ)>
State set {8,14} was the top of the stack, with no other

character transition differences. It will be added to M after

character v partitioning (C = /0)

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — partition by sState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}}
Stack L =< ({18,19, . . . ,23},Σ)>
S = {1, . . . ,7,9, . . . ,12} C = {t,u,v} c = s

X1 = {1,2,4,5,6,9,10}

X2 = {3,7} X3 = {11,12}

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — push {Xi,C} back to LState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}}
Stack L =< ({11,12} ,{t,u,v}),({3,7} ,{t,u,v}),

({1,2,4,5,6,9,10} ,{t,u,v}),({18,19, . . . ,23},Σ)>

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — M grows!State a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12} , {3,7}

Stack L =< ({1,2,4,5,6,9,10} ,{t,u,v}),({18,19, . . . ,23},Σ)>

State sets {11,12} and {3,7} were on the top of the stack

and neither had any other character transition differences.

They will be added to M after character v partitioning

(C = /0)

The state set {1,2,4,5,6,9,10} has no other similarities

over the characters {t,u,v}.
T [6][t] = 5 will discard state 6, T [2][u] 6= T [5][u] 6= T [10][u]
will discard states 2, 5 and 10, and

T [1][v] 6= T [4][v] 6= T [9][v] will discard the remaining states.

Merging DFA States — M grows!State a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12} , {3,7}

Stack L =< ({1,2,4,5,6,9,10} ,{t,u,v}),({18,19, . . . ,23},Σ)>

State sets {11,12} and {3,7} were on the top of the stack

and neither had any other character transition differences.

They will be added to M after character v partitioning

(C = /0)

The state set {1,2,4,5,6,9,10} has no other similarities

over the characters {t,u,v}.
T [6][t] = 5 will discard state 6, T [2][u] 6= T [5][u] 6= T [10][u]
will discard states 2, 5 and 10, and

T [1][v] 6= T [4][v] 6= T [9][v] will discard the remaining states.

Can we predict how the accepting state set in L will

alter M?

Merging DFA States — |L|= 0
State a b c q r s t u v

→ 0 17 • • • • • • • •
1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 14 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12}, {3,7}, {18,19} , {20,23} , {21,22}}

Stack L =< empty >

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

Merging DFA States — Merge Rows 8 and 14
State a b c q r s t u v

→ 0 17 • • • • • • • •
1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 12 • • •
14 • • • • 8 7 • 6 •
15 • • • 8 13 12 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = { {8,14} , {11,12}, {3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

S = {8,14}

Remove row 14, change 14s to 8s in cells.

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

Merging DFA States — Merge Rows 11 and 12
State a b c q r s t u v

→ 0 17 • • • • • • • •
1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 7 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
12 • • • • • 11 10 • •
13 • • • • 13 11 • • •
15 • • • 8 13 11 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12} , {3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

S = {11,12}

Remove row 12, change 12s to 11s in cells.

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

Merging DFA States — Merge Rows 3 and 7
State a b c q r s t u v

→ 0 17 • • • • • • • •
1 • • • • • • • • 19
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22
7 • • • • • 3 2 • •
8 • • • • 8 3 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
13 • • • • 13 11 • • •
15 • • • 8 13 11 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12}, {3,7} ,{18,19},{20,23},{21,22}}
Stack L =< empty >

S = {3,7}

Remove row 7, change 7s to 3s in cells.

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

Merging DFA States — Merge Rows 18 and 19
State a b c q r s t u v

→ 0 17 • • • • • • • •
1 • • • • • • • • 18
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 22

8 • • • • 8 3 • 6 •
9 • • • • • • • • 23

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
13 • • • • 13 11 • • •
15 • • • 8 13 11 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18
⊚ 19 • • • • • • • • 18
⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21
⊚ 22 • • • • • • • • 21
⊚ 23 • • • • • • • • •

Set M = {{8,14}, {11,12}, {3,7}, {18,19} ,{20,23},{21,22}}
Stack L =< empty >

S = {18,19}

Remove row 19, change 19s to 18s in cells.

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

Merging DFA States — . . . so on and so forth.State a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 18
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 21

8 • • • • 8 3 • 6 •
9 • • • • • • • • 20

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
13 • • • • 13 11 • • •
15 • • • 8 13 11 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18

⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21

Set M = {{8,14}, {11,12}, {3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

return T [·][·]

Merging DFA States — . . . not done yetState a b c q r s t u v
→ 0 17 • • • • • • • •

1 • • • • • • • • 18
2 • • • • • • • 1 •
3 • • • • • 3 2 • •
4 • • • • • • • • 20
5 • • • • • • • 4 •
6 • • • • • • 5 • 21

8 • • • • 8 3 • 6 •
9 • • • • • • • • 20

10 • • • • • • • 9 •
11 • • • • • 11 10 • •
13 • • • • 13 11 • • •
15 • • • 8 13 11 • • •
16 • • 15 • • • • • •
17 • 16 • • • • • • •

⊚ 18 • • • • • • • • 18

⊚ 20 • • • • • • • • •
⊚ 21 • • • • • • • • 21

Set M = {{8,14}, {11,12}, {3,7},{18,19},{20,23},{21,22}}
Stack L =< empty >

Consider states 4 and 9, these can now be merged!

Also notice that states 18 and 21 could actually be

considered identical, because they both transition back onto

themselves.

We correct the first issue by running the MergeStates

algorithm on a DFA until the number of states does not

change.

The second issue could be addressed by more complicated

algorithms, but we won’t pursue these in this course.

MergeStates until |D| does not change
Let DFA D be defined by transition table T [·][·].
T [row][·] uniquely identifies one state of D, and

each T [r][c] identifies the unique transition from

state r to state T [r][c] on input character c ∈ Σ.

repeat (

T ′← MergeStates(T)

if (|T |= |T ′|) then (

break loop

) else (

T ← T ′
)

)

T ′[·][·] is now a well (near?) optimized DFA equivalent

to D with a reasonable number of effective states.

(Dead or unreachable states may still exist.)

Dead and Unreachable Stages

Unreachable States do not have a transition path

from the starting state

Dead States do not have a transition path to an

accepting state.

Which states in this DFA are of what type? 0

1
a

2
b

3

c

4
d

5

k

6
l

7

m

n

8
p

910
s

t

11 w

Dead and Unreachable Stages

Unreachable States do not have a transition path

from the starting state

Dead States do not have a transition path to an

accepting state.

Which states in this DFA are of what type?

B means both dead and unreachable!

Algorithms for pruning out dead and unreachable

states are left as an exercise (NFAMATCH).

What are equivilant DFA states?

Define in your own (group) terms. . .

What are equivilant DFA states?

Define in your own (group) terms. . .

Two identical rows of the DFA T [state][char] table with the same accepting

attribute value.

