
Construct a regular expression to match the following...

1. All bit patterns (0s and 1s) of a 32 bit integer,

2. All 32b integer bit patterns without two sequential identically valued bits,

3. Bit representations of arbitrarily large integers conforming to the pattern

n times
︷ ︸︸ ︷

000...0111...1
︸ ︷︷ ︸

n times



Construct a regular expression to match the following...

1. All bit patterns (0s and 1s) of a 32 bit integer,

(0|1)32

2. All 32b integer bit patterns without two sequential identically valued bits,

(01)16|(10)16

3. Bit representations of arbitrarily large integers conforming to the pattern

n times
︷ ︸︸ ︷

000...0111...1
︸ ︷︷ ︸

n times



Construct a regular expression to match the following...

1. All bit patterns (0s and 1s) of a 32 bit integer,

(0|1)32

2. All 32b integer bit patterns without two sequential identically valued bits,

(01)16|(10)16

3. Bit representations of arbitrarily large integers conforming to the pattern

n times
︷ ︸︸ ︷

000...0111...1
︸ ︷︷ ︸

n times

0
n
1

n ???



Limitations of Regular Languages

Regular languages cannot express arbitrarily deep recursive (nested)

structures.

Examples:

◮ Cannot confirm matching parenthesis of mathematical expressions,

◮ Cannot confirm matching parenthesis of conventional compositional syntax of function

calls (log(sin(3))),

◮ Cannot confirm matching curly braces of compound statements in C, C++, Java,

Javascript, . . .

◮ And the simplist example: 0
n
1

n

For this very reasonable language feature, we need a higher level of language definitions:

context free grammars.


