
Compilers Learning Group Assignment #19 RE Syntax Directed Translation

1. Similar to our discussion today in lecture, the regular expression a-d.q(A|B|)*de+ from the LL(1) grammar

below would yield the “raw” or concrete parse tree on page 6.

Rules

1 RE → ALT $

2 ALT → SEQ ALTLIST

3 ALTLIST → pipe SEQ ALTLIST

4 ALTLIST → λ

5 SEQ → ATOM SEQLIST

6 SEQ → λ

7 SEQLIST → ATOM SEQLIST

8 SEQLIST → λ

9 ATOM → NUCLEUS ATOMMOD

10 ATOMMOD → kleene

11 ATOMMOD → plus

12 ATOMMOD → λ

13 NUCLEUS → open ALT close

14 NUCLEUS → char CHARRNG

15 NUCLEUS → dot

16 CHARRNG → dash char

17 CHARRNG → λ

During the parse several steps can be performed to sim-

plify the structure of the tree, resulting in:

SEQ

range dot q kleene d plus

a d ALT

A B λ

e

In lecture (show re-sdt.pdf) we discussed the syntax directed translation procedures that would be executed

on a subset of the grammar rules. This question asks you to compose the pseudo code for the remaining production

rules that didn’t have their logic presented in lecture.

For guidance, you can use this visualization of the parsing steps for this question’s example.

If you missed lecture, there is a lengthy explanation of the mechanics of syntax directed translation on page 4.

2. We presume your group has by now at least one working LL(1) parser from ll1-parsing.pdf . Take any of the

many simple grammars we’ve had in lecture up until now (or one of your own design) and use it to develop a

framework in the code base for attaching SDT procedures to particular production rules and have them executed

(as shown in lecture) when end-of-production markers are encountered in the LL(1) parsing stack.

Develop for your group a working example that demonstrates at least following:

a. Flip flops or rotates grammar symbols of a particular production rule’s RHS.

For instance, the grammar rule is A → xY z, but the AST children of A are in the order Y z x or z xY or zY x.

b. “Flattens” a recursive rule (such as what happens to SEQLIST in the lecture example.

So grammar rules B → g B and B → g yield an AST node B with many g children, instead of most1 B

nodes having two children g and B.

Keep in mind, there is no practical use of option (a) above in the parsing of languages, it is simply a useful

manipulation that is easy to code and verify in your implementation.

3. Same as question 2 iff your group has two different code implementations. Otherwise, you can ignore this question.

1 . . . all but the recursion terminating substitution.

_llparse-llre-x_src.tok/parsetree.eps
https://cs.mcprogramming.com/static/comp/hr/43e9d2b601654ab6/show_re-sdt.pdf
https://cs.mcprogramming.com/static/comp/hr/eaa52e95d30ef9ae/show_llparse-llre-x_src.tok.pdf
https://cs.mcprogramming.com/static/comp/hr/499147ae4c7cf152/ll1-parsing.pdf

Compilers Learning Group Assignment #19 RE Syntax Directed Translation

4. Suppose you are given a correct, un-conflicted SLR(1) table and told the grammar it is for contains only one

non-terminal. Can you deduce the grammar rules from this information? How? Or why not?

Hint: properly written grammars have a starting goal with $ at the end of all its production rules, and therefore

starting goals cannot have recursive rules.

Hint: here is an SLR(1) table for you two contemplate while you reason out your answer.

a c q x $

0 sh-1 sh-2 sh-3

1 sh-4 sh-5

2 sh-6

3 sh-7 sh-8

4 sh-9

5 sh-10

6 sh-11

7 sh-12

8 sh-13

9 sh-14

10 sh-15

11 sh-16

12 sh-17

13 sh-18

14 Reduce 3

15 Reduce 4

16 Reduce 5

17 Reduce 1

18 Reduce 2

Page 2

Compilers Learning Group Assignment #19 RE Syntax Directed Translation

5. Construct a scanning function for our regular expression language on page 1 and reproduced below for your

convenience.2 It should generate output as sequences of pairwise tuples (not surprisingly very similar to the token

output of the LUTHOR programming project). From a regular expression such as

Ab(cd-e+)*(.|012)3 char (

char p

char a

char r

char e

char n

open (

char t

char h

char e

char t

char i

char c

char a

char l

pipe |

close)

char -

char a

char l

char l

char y

char)

char x20

char c

char o

char r

char r

char e

char c

char t

char !

char x0a

your scanning logic should generate the token stream below:

RE → ALT $

ALT → SEQ ALTLIST

ALTLIST → pipe SEQ ALTLIST

| λ

SEQ → ATOM SEQLIST

| λ

SEQLIST → ATOM SEQLIST

| λ

ATOM → NUCLEUS ATOMMOD

ATOMMOD → kleene

| plus

| λ

NUCLEUS → open ALT close

| char CHARRNG

| dot

CHARRNG → dash char

| λ

char A

char b

open (

char c

char d

dash -

char e

plus +

close)

kleene *

open (

dot .

pipe |

char 0

char 1

char 2

close)

char 3

Recall that a scanner generates only the terminals of a language — it will never output a NUCLEUS, these are

formed by the parser when recognizing patterns in the terminals.

We need to be able to write regular expressions with the char data of asterisk (*), so we must have a method for

escaping the special symbols of our RE language. We’ll use the ubiquitous backslash (0x5c) for this purpose. It

will be helpful to have a few other specially escaped characters as well, here is the full list:

RE sequence token stream RE sequence token stream

\| char | * char *
\+ char + \. char .

\(char (\) char)
\- char - \s char x20

\n char x0a \\ char \

When turning a regular expression into a token stream, these backslash forms should emit a simple char terminal.

For example, in the margin at the right is the expected output from a more complex regular expression:

\(paren(thetical|)\-ally\)\scorrect!\n

Now here’s the (small) kicker: Don’t implement any of the scanning logic using your language’s built-in regex

features! We want to finish the course having bootstrapped our own REs and Lexer. We can’t say that if you use

a regular expression library from another source. In truth this requirement is not difficult to meet,3 none of the

sequences above require looking ahead more than two characters at a time.

2This logic is referred to in WRECK as the “silly lexer,” because it is quite barely a lexer.
3A loop and one state variable?

Page 3

Compilers Learning Group Assignment #19 RE Syntax Directed Translation

Syntax Directed Translation (SDT) in brief

The thought exercise for question 1 has you determine the algorithms for massaging the raw parse tree (on page 6,

also called a concrete syntax tree) into the simplified tree above.

Envision an algorithm where a rule or non-terminal specific function is invoked when each internal (non-terminal)

node of a parse tree is completed. In this case completed means that no more children will be added to the node and no

more children will be added to any descendants of the node. In the case of the LL parsing algorithm, this is everytime

a production marker (*) is popped off the stack. See show re-sdt.pdf and the parsing steps for a visual of the

parsing algorithm.

By way of example, consider how the first NUCLEUS node in the left-most derivation of a-d.q(A|B|)*de+ might

be simplified immediately after the first application of rule 14 is completed. The regular expression part is a-d, which

from the grammar above yields the partial4 parse tree with the NUCLEUS node at the left:

Pre

if (node.CHARRNG.char exists) then (

let rangeNode← new range node

rangeNode.addChild(node.char)
rangeNode.addChild(node.CHARRNG.char)
replace node.children with rangeNode in parse tree T

return

)

Post

The pseudo code in the middle shows how the parse tree NUCLEUS node can be immediately simplified, with the

resulting parse tree Post to the right. Some points for clarification:

i. Not all non-terminal nodes require simplification functions — truly one skill to be developed here is choosing

the nodes for simplification in order to easily arrive at a simplified parse tree.

ii. The psuedo code uses terms directly from the grammar and the (partial) raw parse tree. How was the “path” of

node.CHARRNG.char chosen in the logic? Because node≡ NUCLEUS and node.CHARRNG.char is the most

convenient and unambiguous identifier for the second child of node’s second child.

iii. The node type of range is not a grammar symbol, but that’s OK — the input so far has been syntax verified, so

we don’t need to maintain the originally parsed structure of the input.

iv. Since we consider this simplification occuring as soon as a non-terminal node is completed, the tree does not yet

show the ATOMMOD node deriving to λ and being appended as the right most child of the ATOM node now

containing range.

v. We can envision the next simplification function called will be the one for ATOM after production rule 9 is

completed. The partial parse tree at that time is shown on the following page; since there is no + or * operator

applied to range the ATOM can be “simplified away” leaving range as the first child of SEQ.

4It is a partial parse tree because it is still being constructed by an LL (top-down) parse — the only place you see full, raw parse trees are in

university compilers courses — in practice simplification of the parse tree occurs hand-in-hand and concurrently with the parse!

Page 4

https://cs.mcprogramming.com/static/comp/hr/43e9d2b601654ab6/show_re-sdt.pdf
https://cs.mcprogramming.com/static/comp/hr/eaa52e95d30ef9ae/show_llparse-llre-x_src.tok.pdf
_llre-x_0010.eps
_llre-x_0011.eps

Compilers Learning Group Assignment #19 RE Syntax Directed Translation

Pre

Post

Your task for question(s) 1 of this LGA: design the required simplification logic for transforming the (partial) LL(1)

generated parse trees created during the recursive descent parse into a simplifed AST (the tree on on page 1).

For completeness, we show the complete pseudo code for simplifying NUCLEUS nodes (grammar rules 13–15):

procedure NUCLEUS(node, parse tree T)

if (node.children[0] is open) then (

replace node with node.children[1] in parse tree T

return

)

if (node.CHARRNG.char exists) then (

let rangeNode← new range node

rangeNode.addChild(node.char)
rangeNode.addChild(node.CHARRNG.char)
replace node.children with rangeNode in parse tree T

return

)

if (node.CHARRNG.child is λ) then (

remove node.CHARRNG child

return

)

if (node.child is dot) then (

replace node with node.child in parse tree T

return

)

Beginning on the following page are the transformations of the parse (sub)trees that occur depending on the production

rule being processed. In all PRE trees, the grey node represents node of the NUCLEUS logic; in the POST the only

colored node represents the the same location in the parse tree as the PRE grey node.

Page 5

_llre-x_0014.eps
_llre-x_0015.eps

Compilers Learning Group Assignment #19 RE Syntax Directed Translation

Rule 13, NUCLEUS → open ALT close

PRE POST

NUCLEUS

(ALT)

ALT

Rule 15, NUCLEUS → dot

PRE POST

NUCLEUS

dot

dot

Rule 14 when CHARRNG.char exists

PRE POST

NUCLEUS

char0 CHARRNG

char1

r����

char0 char1

Rule 14 when CHARRNG.child is λ

PRE POST

NUCLEUS

char CHARRNG

�

char

“Raw” Parse Tree for input a-d.q(A|B|)*de+ , also called a concrete parse tree

RE

ALT $

SEQ ALTLIST

ATOM SEQLIST

NUCLEUS ATOMMOD

a CHARRNG

dash d

�

ATOM SEQLIST

NUCLEUS ATOMMOD

dot �

ATOM SEQLIST

NUCLEUS ATOMMOD

q CHARRNG

�

�

ATOM SEQLIST

NUCLEUS ATOMMOD

open ALT close

SEQ ALTLIST

ATOM SEQLIST

NUCLEUS ATOMMOD

A CHARRNG

�

�

�

pipe SEQ ALTLIST

ATOM SEQLIST

NUCLEUS ATOMMOD

B CHARRNG

�

�

�

pipe SEQ ALTLIST

� �

kleene

ATOM SEQLIST

NUCLEUS ATOMMOD

d CHARRNG

�

�

ATOM SEQLIST

NUCLEUS ATOMMOD

e CHARRNG

�

plus

�

�

Page 6

nucleus-open.eps
nucleus-open-post.eps
nucleus-dot.eps
nucleus-dot-post.eps
nucleus-charrng-char.eps
nucleus-charrng-char-post.eps
nucleus-charrng-lambda.eps
nucleus-charrng-lambda-post.eps
_llparse-llre-w_src.tok/parsetree.eps

