#Rules1 $S \rightarrow A$ \$2 $S \rightarrow B$ \$3 $A \rightarrow a$ 4 $B \rightarrow B b$ 5 $C \rightarrow c$

#Rules1 $S \rightarrow A$ \$2 $S \rightarrow B$ \$3 $A \rightarrow a$ 4 $B \rightarrow B b$ 5 $C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with *B* cannot derive to only terminals *a*, *b* and *c*. (a $B \rightarrow \lambda$ rule is missing).

#	Rules
1	$S \rightarrow A$ \$
2	$S \rightarrow B$ \$
З	$A \rightarrow a$
4	$B \rightarrow B b$
5	$C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with *B* cannot derive to only terminals *a*, *b* and *c*. (a $B \rightarrow \lambda$ rule is missing).

Strangely: this grammar is **not considered invalid**, but it isn't a reduced grammar. (In much the same way as **finite automatas with dead or unreachable states** are still considered valid FAs.)

Rules1 $S \rightarrow A$ \$2 $S \rightarrow B$ \$3 $A \rightarrow a$ 4 $B \rightarrow B b$ 5 $C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with *B* cannot derive to only terminals *a*, *b* and *c*. (a $B \rightarrow \lambda$ rule is missing).

From this you can infer what it means to "reduce" a grammar, and what the query "Is grammar $G(N, \Sigma, P, S)$ reduced?" asks.