What's wrong with this grammar?

$$
\begin{array}{ll}
\# & \text { Rules } \\
\hline 1 & S \rightarrow A \$ \\
2 & S \rightarrow B \$ \\
3 & A \rightarrow a \\
4 & B \rightarrow B b \\
5 & C \rightarrow c
\end{array}
$$

What's wrong with this grammar?

$\#$	Rules
1	$S \rightarrow A \$$
2	$S \rightarrow B \$$
3	$A \rightarrow a$
4	$B \rightarrow B b$
5	$C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with B cannot derive to only terminals a, b and c. (a $B \rightarrow \lambda$ rule is missing).

What's wrong with this grammar?

$\#$	Rules
1	$S \rightarrow A \$$
2	$S \rightarrow B \$$
3	$A \rightarrow a$
4	$B \rightarrow B b$
5	$C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with B cannot derive to only terminals a, b and c. (a $B \rightarrow \lambda$ rule is missing).

Strangely: this grammar is not considered invalid, but it isn't a reduced grammar. (In much the same way as finite automatas with dead or unreachable states are still considered valid FAs.)

What's wrong with this grammar?

$\#$	Rules
1	$S \rightarrow A \$$
2	$S \rightarrow B \$$
3	$A \rightarrow a$
4	$B \rightarrow B b$
5	$C \rightarrow c$

- C cannot appear in any parse from S (it is unused and therefore unneeded).
- Any phrase with B cannot derive to only terminals a, b and c. (a $B \rightarrow \lambda$ rule is missing).

From this you can infer what it means to "reduce" a grammar, and what the query "Is grammar $G(N, \Sigma, P, S)$ reduced?" asks.

