
Operation: token char match (char)

STACK QUEUE PARSE TREE

Consider the semantic action for converting the NUCLEUS of a-e to a range node.

Input RE: a-e+

Operation: token char match (char)

STACK QUEUE PARSE TREE

CHARRNG_dash_char(parent, node)

rangeNode← node(range,children = [parent. f irstChild,node.lastChild])
replace parent with rangeNode in parse tree

Input RE: a-e+

Operation: end of CHARRNG production

STACK QUEUE PARSE TREE

Input RE: a-e+

Context Available to LL Semantic Actions

Semantic actions in LL (recursive-descent) parses have an execution context with access to the

following information:

1. The node and all it’s descendants,

2. The node’s parent (in fact, its ancestors all the way to the starting goal root node),

3. The node’s left hand siblings

CHARRNG_dash_char took advantage of this information and made a substantial change to the tree

under the ATOM node.

Now let’s consider the same semantic action logic during an LR parse of the same input. . .

Operation: shift dash to stack, goto state 8
TOP OF STACK FRONT OF DEQUE

Operation: shift char to stack, goto state 19
TOP OF STACK FRONT OF DEQUE

Operation: post LR reduction — before CHARRNG rule 16 SDT procedure
TOP OF STACK FRONT OF DEQUE

CHARRNG_dash_char(parent, node)

rangeNode← node(range,children = [parent. f irstChild,node.lastChild])
replace parent with rangeNode in parse tree

This is going to cause problems! parent is unknown,

and the left hand char is still in the stack,it’s not in the same subtree as the CHARRNG node!

Input RE: a-e+

Context Available to LR Semantic Actions

What information (compared to semantic actions during LL parses) do we have in LR parses?

Context Available to LR Semantic Actions

What information (compared to semantic actions during LL parses) do we have in LR parses?

1. Only one: The node and all it’s descendants,

2. The node’s parent (in fact, its ancestors all the way to the starting goal root node),

3. The node’s left hand siblings

But we can work around this by moving the CHARRNG logic from the CHARRNG_dash_char

semantic action to the NUCLEUS_char_CHARRNG semantic action. . .

Operation: post LR reduction — before NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (node)

rangeNode← node(range,children = [node. f irstChild,node.lastChild.lastChild])
replace node with rangeNode in parse tree

We’ve lost the parent argument to the semantic action, since it isn’t known in LR parses.

Input RE: a-e+

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

LR_Parse_Failure
range 6∈ Σ$∪N

The LR table does not have a range column!

Input RE: a-e+

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

But we can delay the re-typing of NUCLEUS to range by “tagging” the node with the appropriate

attribute and letting the ATOM parent change the node type.

Input RE: a-e+

Operation: post LR reduction — before NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (node)

rangeNode← node(NUCLEUS,children = [node. f irstChild,node.lastChild.lastChild])
set attribute rangeNode.reTypeMe← range

replace node with rangeNode in parse tree

We postpone the re-typing of NUCLEUS with a node attribute.

Input RE: a-e+

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (node)

rangeNode← node(NUCLEUS,children = [node. f irstChild,node.lastChild.lastChild])
set attribute rangeNode.reTypeMe← range

replace node with rangeNode in parse tree

We postpone the re-typing of NUCLEUS with a node attribute.

Input RE: a-e+

Operation: shift NUCLEUS to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: shift plus to stack, goto state 17
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: reduce by rule 11 ATOMMOD → plus
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: shift ATOMMOD to stack, goto state 18
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: post LR reduction — before ATOM rule 9 SDT procedure
TOP OF STACK FRONT OF DEQUE

ATOM_NUCLEUS_ATOMMOD (node)

nucChild ← node.NUCLEUS

if (nucChild.reTypeMe exists) then (

nucChild.type← nucChild.reTypeMe

remove nucChild.reTypeMe

)

Look for and follow a reTypeMe attribute in our NUCLEUS child.

Input RE: a-e+

Operation: post LR reduction — after ATOM rule 9 SDT procedure
TOP OF STACK FRONT OF DEQUE

ATOM_NUCLEUS_ATOMMOD (node)

nucChild ← node.NUCLEUS

if (nucChild.reTypeMe exists) then (

nucChild.type← nucChild.reTypeMe

remove nucChild.reTypeMe

)

Look for and execute a reTypeMe attribute in our NUCLEUS child.

Yay! it finally works. . .

Input RE: a-e+

Operation: shift ATOM to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: reduce by rule 8 SEQLIST → λ
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: shift SEQLIST to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

Input RE: a-e+

Operation: reduce by rule 5 SEQ → ATOM SEQLIST
TOP OF STACK FRONT OF DEQUE

(There are more λ rules in the parse, but we stop here. . .)

Input RE: a-e+

Well, that was Ugly :(

Consider what we’ve just done:

i. We moved all the semantic actions associated with CHARRNG into two other procedures, one

of which, ATOM’s semantic action is two “grammar generations away” from CHARRNG.

ii. Who in there right mind would look in the ATOM_NUCLEUS_ATOMMOD semantic action thinking

“Oh, that’s where range nodes must be created.” No one would.

iii. What I’ve demonstrated is “spaghetti logic,” which is worse than spaghetti code because there

are programming tools that can help you figure out spaghetti code...

iv. And the situation becomes worse when more SDT logic is added (we’ve been working on only

one non-terminal to RE expression tree translation!)

v. Don’t pursue this method of implementing SDT in LR parses. You’ve been warned.

Instead, we need to be smarter in our LR parsing. . .

Two Better LR+SDT Approaches

Add an astStack A node will have full control over its descendents and itself.

Nodes still don’t know their parent or left hand siblings at the time of execution.

Delay execution Wait until semantic actions have the same execution context as in an LL parse.

Semantic actions can be identical to logic used in LL parses.

Nodes know their parents, their left hand siblings, and have full control over their

descendents and themselves.

Requires slight modification to tree node structures.

Operation: shift char to stack, goto state 19
TOP OF STACK FRONT OF DEQUE

Adding an astStack to an LR parse.

LRtable[19][+] is a reduce action. . .

Operation: reduce by rule 16 CHARRNG → dash char
TOP OF STACK FRONT OF DEQUE

You can think of the astStack as a separate data structure, or the entries of the stack as pointers

or members of the deque elements. There is an element in the astStack for each non-terminal at

the front of the deque (incidentally, non-terminals appear only at the front of the deque).

Operation: reduce by rule 16 CHARRNG → dash char
TOP OF STACK FRONT OF DEQUE

Now the deque holds a non-terminal placeholder; not the root of a subtree. The slides draw these

special placeholders in pentagons.

The placeholders permit the root of the subtree to be a non-grammar symbol (such as range). The

algorithm uses the placeholder symbol as the LR table column entry to look up the next parsing

action (shift, reduce).

Operation: shift CHARRNG to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

When a shift action occurs on a placeholder:

i. Discard the placeholder

ii. Connect the associated astStack element (IOW: pop the astStack) to the new state being

shifted to the left “knitting needle.”

Operation: post LR reduction — before NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (node)

rangeNode← node(range,children = [node. f irstChild,node.lastChild.lastChild])
replace node with rangeNode in parse tree

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (node)

rangeNode← node(range,children = [node. f irstChild,node.lastChild.lastChild])
replace node with rangeNode in parse tree

Now the range node root of the subtree doesn’t interfere with LR table column look up :)

Operation: shift range to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

Operation: shift plus to stack, goto state 17
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 11 ATOMMOD → plus
TOP OF STACK FRONT OF DEQUE

Operation: shift ATOMMOD to stack, goto state 18
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 9 ATOM → NUCLEUS ATOMMOD
TOP OF STACK FRONT OF DEQUE

Operation: shift ATOM to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 8 SEQLIST → λ
TOP OF STACK FRONT OF DEQUE

Operation: shift SEQLIST to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 5 SEQ → ATOM SEQLIST
TOP OF STACK FRONT OF DEQUE

Operation: shift char to stack, goto state 19
TOP OF STACK FRONT OF DEQUE

Delayed execution in an LR Parse.

LRtable[19][+] is a reduce action. . .

Operation: reduce by rule 16 CHARRNG → dash char
TOP OF STACK FRONT OF DEQUE

No CHARRNG semantic action, we use the NUCLEUS reduction for the semantic action. . .

Operation: shift CHARRNG to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 14 NUCLEUS → char CHARRNG
TOP OF STACK FRONT OF DEQUE

We’ve just reduced to a NUCLEUS node, but we don’t execute the semantic action for

NUCLEUS yet!

(If we did, this implementation would be pretty poorly named.)

Operation: reduce by rule 14 NUCLEUS → char CHARRNG
TOP OF STACK FRONT OF DEQUE

We’ve just reduced to a NUCLEUS node, but we don’t execute the semantic action for

NUCLEUS yet!

Instead we will tag the NUCLEUS node with the production rule number (or a pointer to this

production rule’s semantic action). This is the rule:14 attribute. . .

Operation: shift NUCLEUS to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

. . . and we blissfully continue on with the parse.

Operation: shift plus to stack, goto state 17
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 11 ATOMMOD → plus
TOP OF STACK FRONT OF DEQUE

If ATOMMOD had a semantic action, we would have tagged the node in this step.

But in this example it doesn’t.

Operation: shift ATOMMOD to stack, goto state 18
TOP OF STACK FRONT OF DEQUE

Operation: post LR reduction — before NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

OK! Time for some (semantic) action!

Any time a reduction is performed, inspect each immediate child of the root node.

If the child has been “tagged” with a semantic action, execute it now.

foreach (child in parent.children from left to right) do (

if (child.rule exists) then (

semAction← semantic action for child.rule

call semAction(parent,child)
)

)

Operation: post LR reduction — before NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

NUCLEUS_char_CHARRNG (parent, node)

rangeNode← node(range,children = [node. f irstChild,node.lastChild.lastChild])
replace node with rangeNode in parent

Operation: post LR reduction — after NUCLEUS rule 14 SDT procedure
TOP OF STACK FRONT OF DEQUE

Operation: shift ATOM to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 8 SEQLIST → λ
TOP OF STACK FRONT OF DEQUE

Operation: shift SEQLIST to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 5 SEQ → ATOM SEQLIST
TOP OF STACK FRONT OF DEQUE

Operation: shift char to stack, goto state 19
TOP OF STACK FRONT OF DEQUE

Too Better LR+SDT Approach
It’s no joke! Combine the two techniques, this allows us to put the logic for CHARRNG entirely at

the CHARRNG semantic action (where it belongs, IMHO).

LRtable[19][+] is a reduce action. . .

Operation: reduce by rule 16 CHARRNG → dash char
TOP OF STACK FRONT OF DEQUE

Tag the CHARRNG node with the production rule number (or a pointer to this production rule’s

semantic action). This is the rule:16 attribute. . .

Operation: shift CHARRNG to stack, goto state 9
TOP OF STACK FRONT OF DEQUE

Operation: post LR reduction — before CHARRNG rule 16 SDT procedure
TOP OF STACK FRONT OF DEQUE

Any time a reduction is performed, inspect each immediate child of the root node.

If the child has been “tagged” with a semantic action, execute it now.

foreach (child in parent.children from left to right) do (

if (child.rule exists) then (

semAction← semantic action for child.rule

call semAction(parent,child)
)

)

Operation: post LR reduction — before CHARRNG rule 16 SDT procedure
TOP OF STACK FRONT OF DEQUE

CHARRNG_dash_char(parent, node)

rangeNode← node(range,children = [parent. f irstChild,node.lastChild])
replace parent with rangeNode in parse tree

Operation: post LR reduction — after CHARRNG rule 16 SDT procedure
TOP OF STACK FRONT OF DEQUE

Operation: shift range to stack, goto state 7
TOP OF STACK FRONT OF DEQUE

Operation: shift plus to stack, goto state 17
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 11 ATOMMOD → plus
TOP OF STACK FRONT OF DEQUE

Operation: shift ATOMMOD to stack, goto state 18
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 9 ATOM → NUCLEUS ATOMMOD
TOP OF STACK FRONT OF DEQUE

Operation: shift ATOM to stack, goto state 6
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 8 SEQLIST → λ
TOP OF STACK FRONT OF DEQUE

Operation: shift SEQLIST to stack, goto state 15
TOP OF STACK FRONT OF DEQUE

Operation: reduce by rule 5 SEQ → ATOM SEQLIST
TOP OF STACK FRONT OF DEQUE

fini

