procedure MergeStates (accepts DFA D defined by
transition table T[][])
returns a potentially new T[][]

T[row][-] uniquely identifies one state of D, and
each T|r]lc] identifies the unique transition from
state r to state T[rl]lc] on input character c€X.

let M be an empty set
let L be an empty stack
push ({accepting states of D},X) onto L
push ({non-accepting states of D},X) onto L
repeat
S,C <+ pop L
remove an element ¢ from C
Partition states s in S by T[s|[c] into sets
X1,X2,X3,...,X;
foreach (X; of X1,X5,X3,....Xx with |Xj{>1) do (
if (C=0) then (
add X; to M
) else (
push (X;,C) onto L
)
)
) while ([L|>0)
foreach (S&eM) do (
merge rows of T[][] identified by states in §,
fixing up transitions to these states as well!
if (starting state of DeS) then (
mark the newly merged row as the
starting state of D
)

)
return T[][]

Let DFA D be defined by transition table T[][].
Tlrow][:] uniquely identifies one state of D, and
each T[r][c] identifies the unique transition from
state r to state TJ[r][c] on input character c€X.
repeat (

T' <+ MergeStates (T)

if (|T|=|T'|) then (

break loop
) else (
T+ T
)
)
T'[][] is now a well (near?) optimized DFA equivalent

to D with a reasonable number of effective states.
(Dead or unreachable states may still exist.)

