
procedure MergeStates(accepts DFA D defined by

transition table T [·][·])

returns a potentially new T [·][·]

T [row][·] uniquely identifies one state of D, and

each T [r][c] identifies the unique transition from

state r to state T [r][c] on input character c ∈ Σ.

let M be an empty set

let L be an empty stack

push ({accepting states of D},Σ) onto L

push ({non-accepting states of D},Σ) onto L

repeat (

S,C← pop L

remove an element c from C

Partition states s in S by T [s][c] into sets

X1,X2,X3, . . . ,Xk

foreach (Xi of X1,X2,X3, . . . ,Xk with |Xi|> 1) do (

if (C = /0) then (

add Xi to M

) else (

push (Xi,C) onto L

)

)

) while (|L|> 0)

foreach (S ∈M) do (

merge rows of T [·][·] identified by states in S,

fixing up transitions to these states as well!

if (starting state of D ∈ S) then (

mark the newly merged row as the

starting state of D

)

)

return T [·][·]

Let DFA D be defined by transition table T [·][·].
T [row][·] uniquely identifies one state of D, and

each T [r][c] identifies the unique transition from

state r to state T [r][c] on input character c ∈ Σ.

repeat (

T
′← MergeStates(T)

if (|T |= |T ′|) then (

break loop

) else (

T ← T
′

)

)

T
′[·][·] is now a well (near?) optimized DFA equivalent

to D with a reasonable number of effective states .

(Dead or unreachable states may still exist.)

