

Formality of Expressions

Mathematical expressions are made up of two things: values and operators.

Values may be either variables (x, stockPrice) or literal values (3, 14, 3.14E2).

(Binary) operators are: addition, subtraction, multiplication (*), division (/), modulus (%), and exponentiation (**).

- ▶ Binary operators always take two arguments, conventionally called the **lhs** and **rhs**.

lhs + rhs

- ▶ All binary operators have two important properties: **precedence** and **associativity**.

Mathematical Precedence

Faced with a programming language expression such as:

a * b + 3 ** x / 2

in what order are the operations performed?

Mathematical Precedence

Faced with a programming language expression such as:

$$a * b + 3 ** x / 2$$

in what order are the operations performed?

When?	Precedence	Operations
First	Highest	$**$ (exponentiation) $*$ / $\%$ (multiplicative class)
Last	Lowest	$+$ $-$ (additive class)

We are sure you remember this as “**please excuse my dear aunt sally.**”

Operator Associativity

Faced with a programming language expression such as:

$$a - b - c$$

in what order are the **same-precedence** operations performed? Yes, you already know this because it has been drilled into your brain along with “Aunt Sally”: left-to-right evaluation!

$$(a - b) - c$$

Left-to-right evaluation comes from the **left-associative property** of addition and multiplicative class operations.

Why? Because the **middle term b is associated with the operator to its left.**

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are some **right-associative** operators?

Exponentiation

5^{x^y} in programming \rightarrow $5 \text{ ** } x \text{ ** } y$ right associative \rightarrow $5 \text{ ** } (x \text{ ** } y)$

The **middle term** is associated with the operator **on its right**.

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are some **right-associative** operators?

Assignment (=) in C, C++, Python, Java, ...

The following two code samples are equivalent, due to the right-associativity of value assignment

```
a = c = 3
```

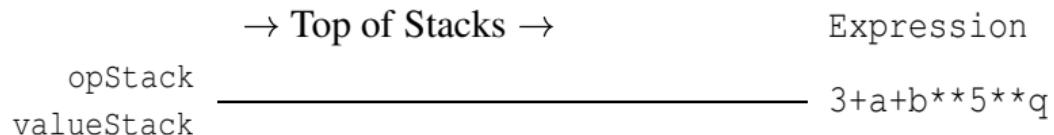
```
c = 3
a = c
```

The **middle term** is associated with the operator **on its right**.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

We begin with an empty valueStack and opStack, and traverse the elements of an expression from left to right.



Begin...

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks →

Expression

opStack
valueStack

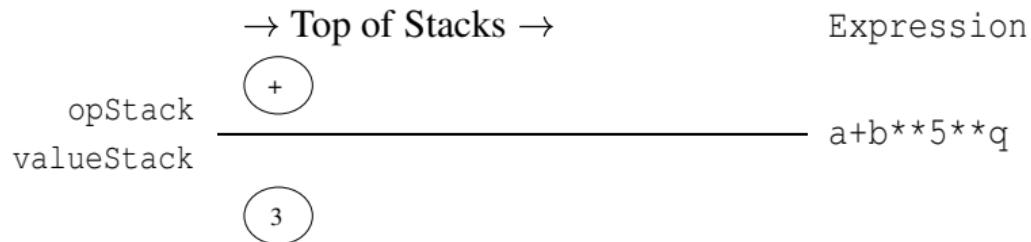
3

$$+a+b^{**5}**q$$

Push value 3 onto valStack

The Shunting Yard Algorithm (Ex 1)

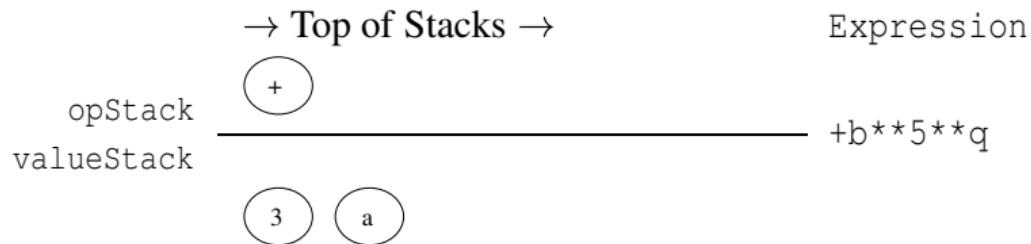
3 + a + b ** 5 ** q



Push operation + onto opStack

The Shunting Yard Algorithm (Ex 1)

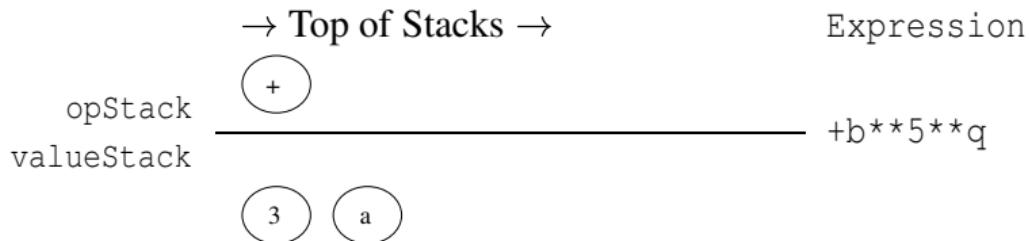
3 + a + b ** 5 ** q



Push value a onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q



Expression's **left-associative** + precedence is
 \leq + (opStack) precedence \rightarrow pop the opStack

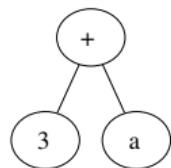
The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks →

Expression

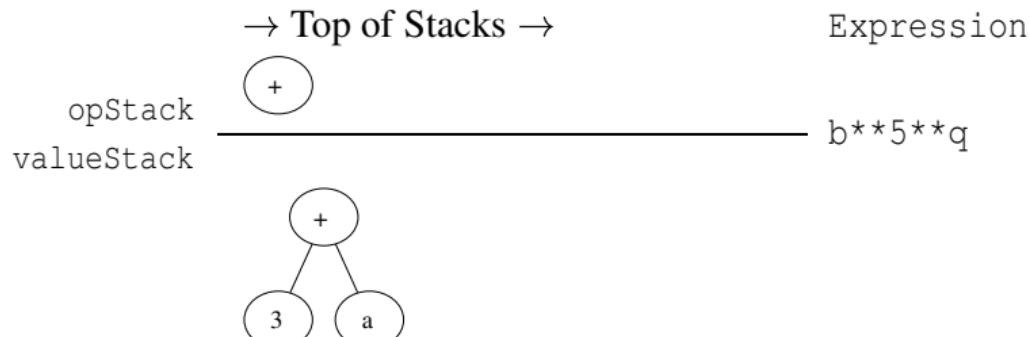
opStack
valueStack



The top operation on the `opStack` binds with the top two elements of the `valueStack` the result is a new value that is pushed onto the `valueStack`.

The Shunting Yard Algorithm (Ex 1)

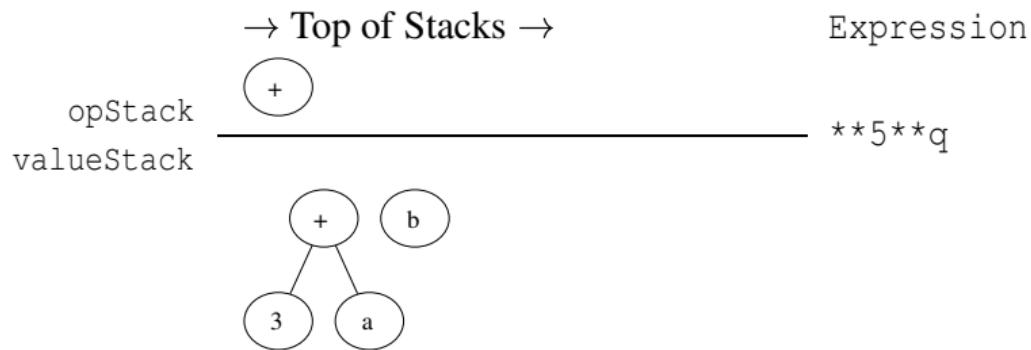
3 + a + b ** 5 ** q



Push operation + onto opStack

The Shunting Yard Algorithm (Ex 1)

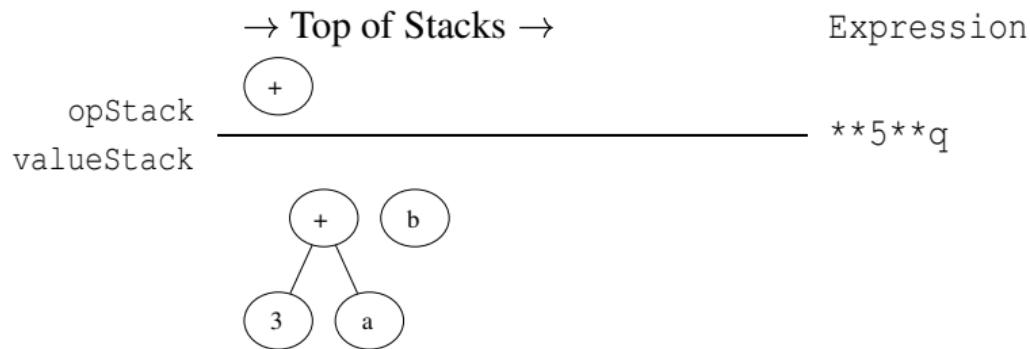
3 + a + b ** 5 ** q



Push value b onto valStack

The Shunting Yard Algorithm (Ex 1)

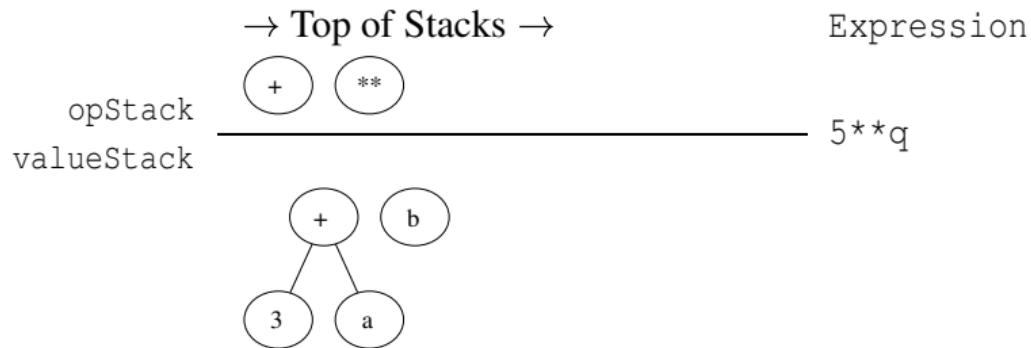
3 + a + b ** 5 ** q



Expression's **right-associative** $**$ precedence is \geq + (opStack) precedence

The Shunting Yard Algorithm (Ex 1)

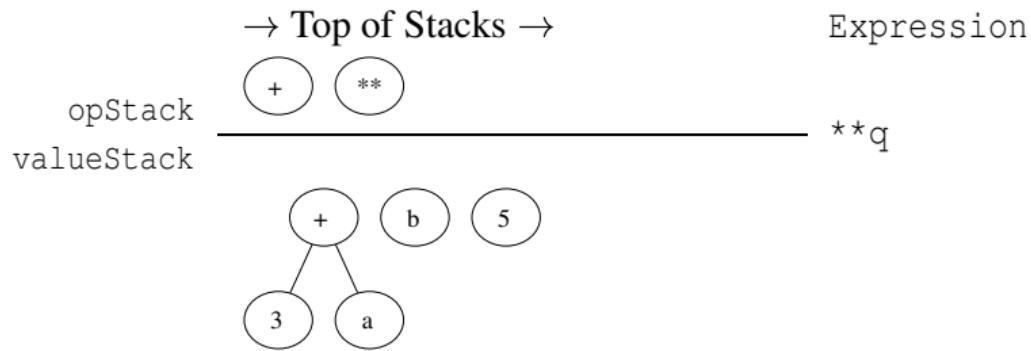
3 + a + b ** 5 ** q



Push operation ** onto opStack

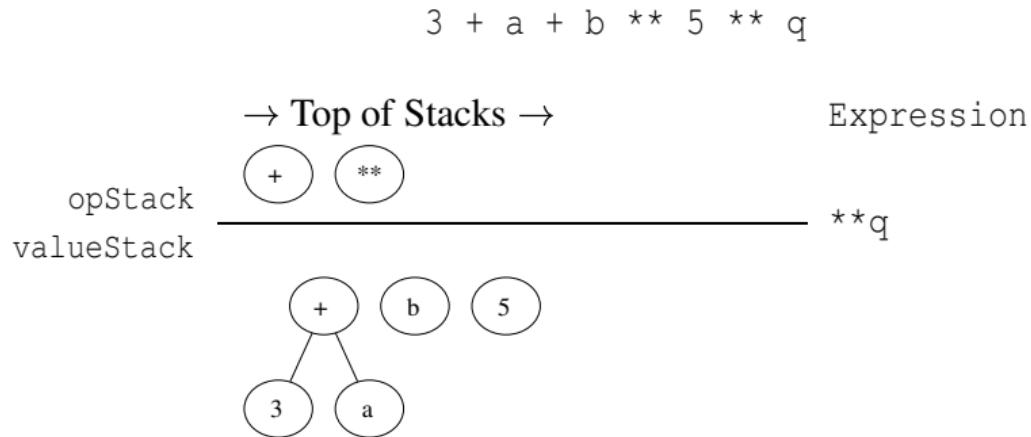
The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q



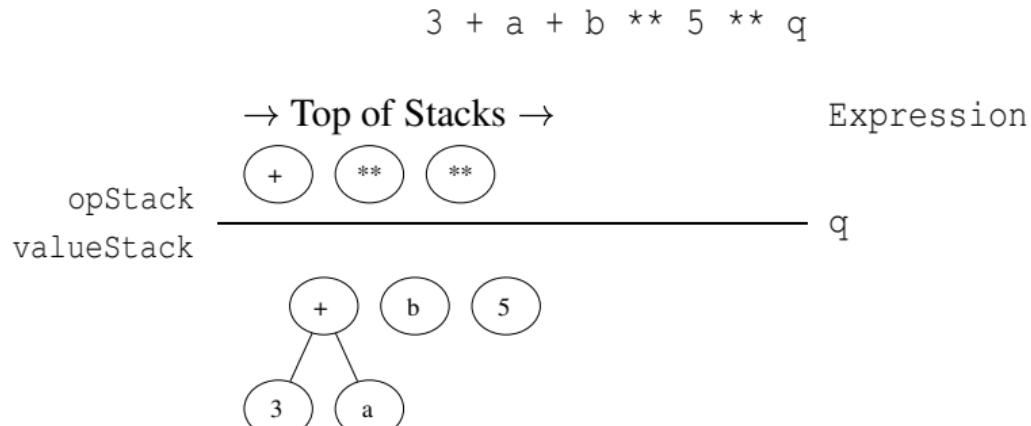
Push value 5 onto valStack

The Shunting Yard Algorithm (Ex 1)



Expression's **right-associative** $\star\star$ precedence is $\geq \star\star$ (opStack) precedence

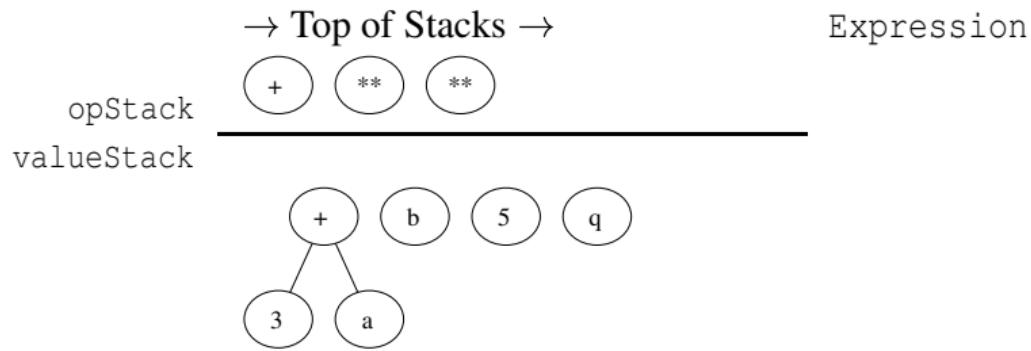
The Shunting Yard Algorithm (Ex 1)



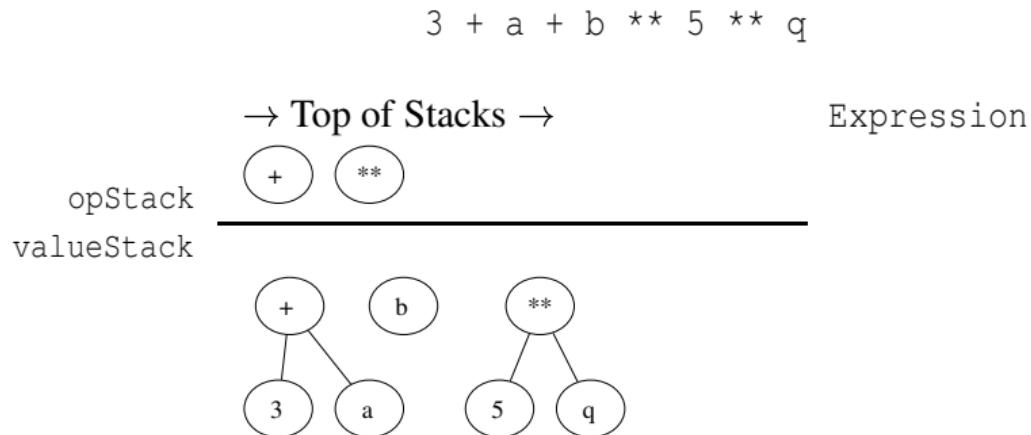
Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q



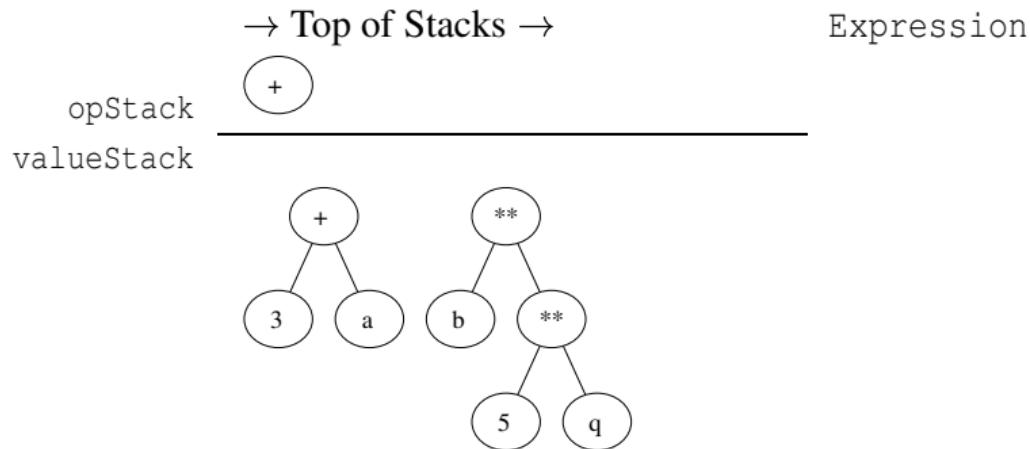
The Shunting Yard Algorithm (Ex 1)



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

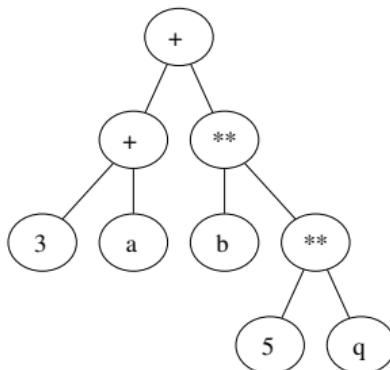
The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks →

Expression

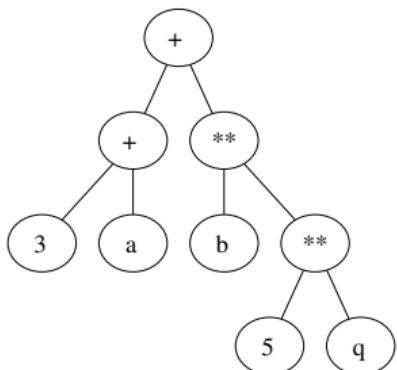
opStack
valueStack



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q



← Expression Tree!

Notice how right-associative exponentiation must be calculated **first** — results of higher precedence operations are the **children** of lower precedence ops.

The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ^\star q$

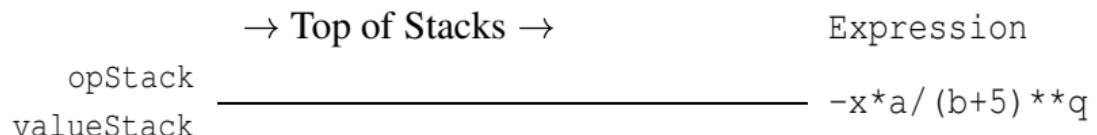
Try drawing the expression tree first ...

can you predict the algorithm results?

The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ^\star q$

We begin with an empty valueStack and opStack, and traverse the elements of an expression from left to right.



Begin...

The Shunting Yard Algorithm (Ex 2)

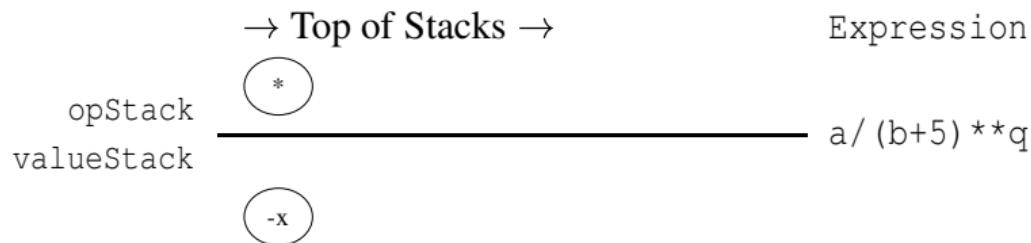
$-x * a / (b + 5) ** q$

	\rightarrow Top of Stacks \rightarrow	Expression
opStack		$*a / (b+5) **q$
valueStack	$-x$	

Push value $-x$ onto valStack

The Shunting Yard Algorithm (Ex 2)

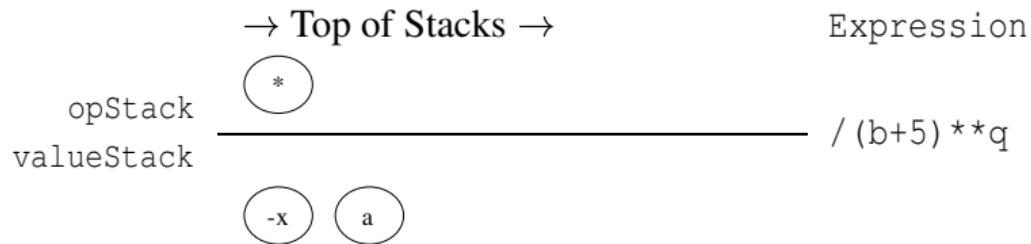
$-x * a / (b + 5) ^\star q$



Push operation $*$ onto opStack

The Shunting Yard Algorithm (Ex 2)

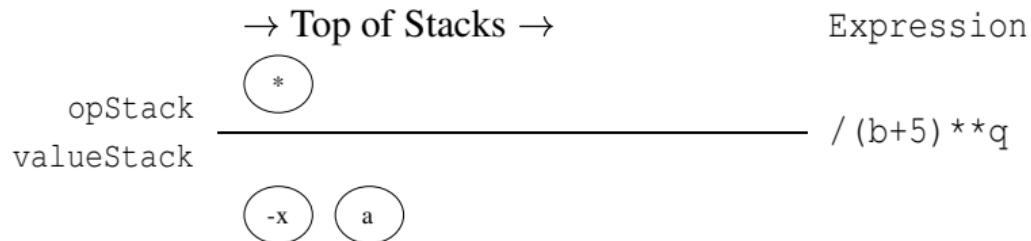
$-x * a / (b + 5) ^\star q$



Push value a onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q



Expression's **left-associative** / precedence is
 \leq * (opStack) precedence \rightarrow pop the opStack

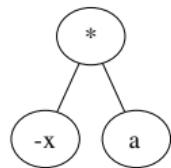
The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ** q$

→ Top of Stacks →

Expression

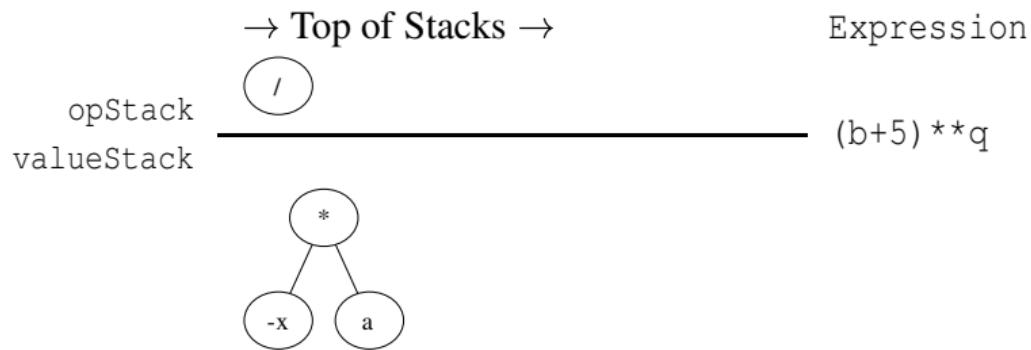
opStack
valueStack



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

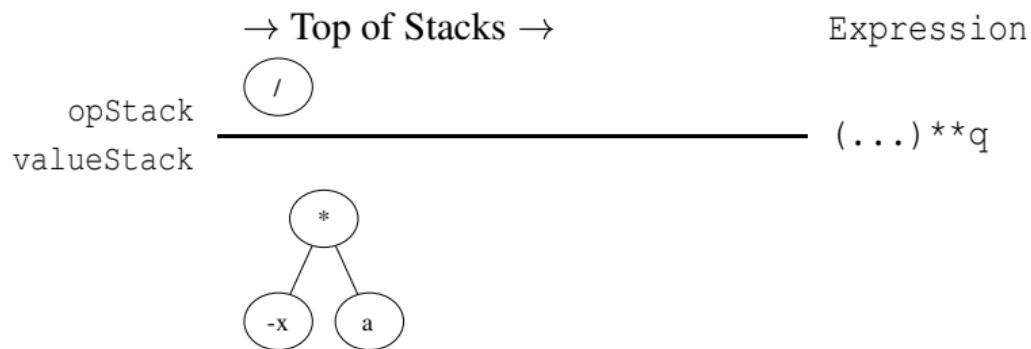
$-x * a / (b + 5) ^\star q$



Push operation / onto opStack

The Shunting Yard Algorithm (Ex 2)

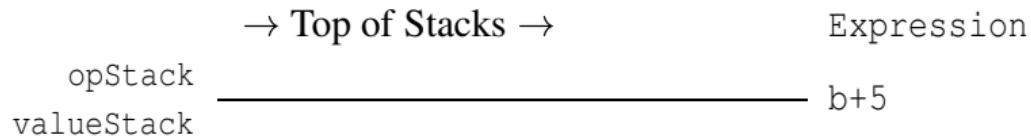
$-x * a / (b + 5) ^\star\star q$



Recursive call for parenthetical grouping

The Shunting Yard Algorithm (Ex 2)

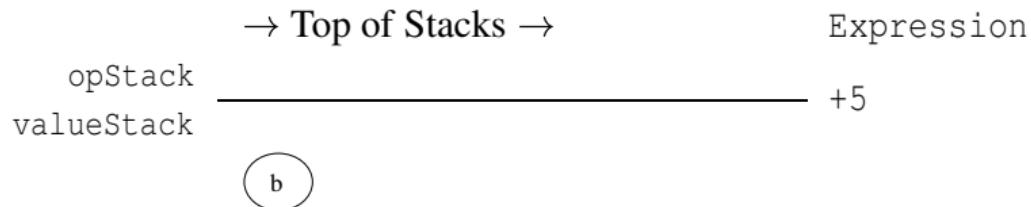
$-x * a / (b + 5) ^\star q$



Begin the recursive call for subexpression tree

The Shunting Yard Algorithm (Ex 2)

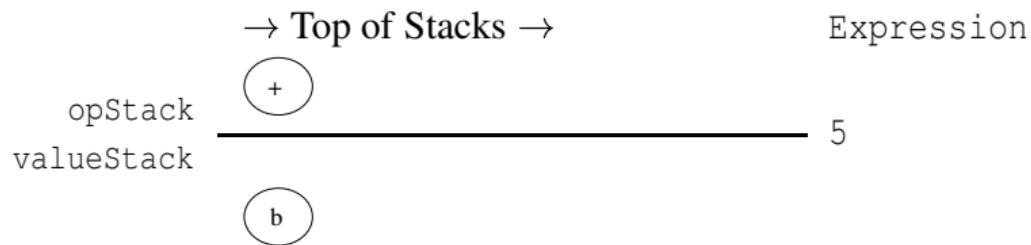
$-x * a / (b + 5) ^\star q$



Push value b onto valStack

The Shunting Yard Algorithm (Ex 2)

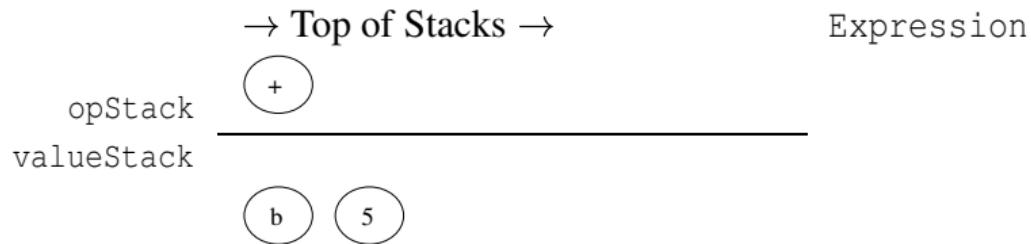
$-x * a / (b + 5) ^\star q$



Push operation $+$ onto opStack

The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ^\star q$



Push value 5 onto valStack

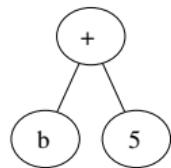
The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ** q$

→ Top of Stacks →

Expression

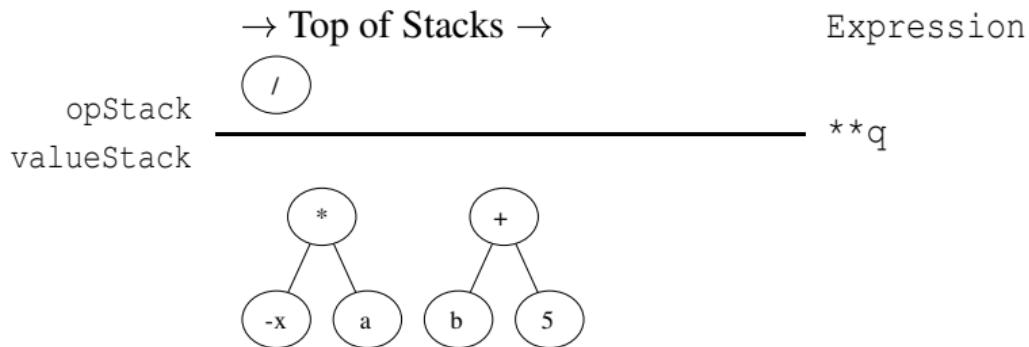
opStack
valueStack



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

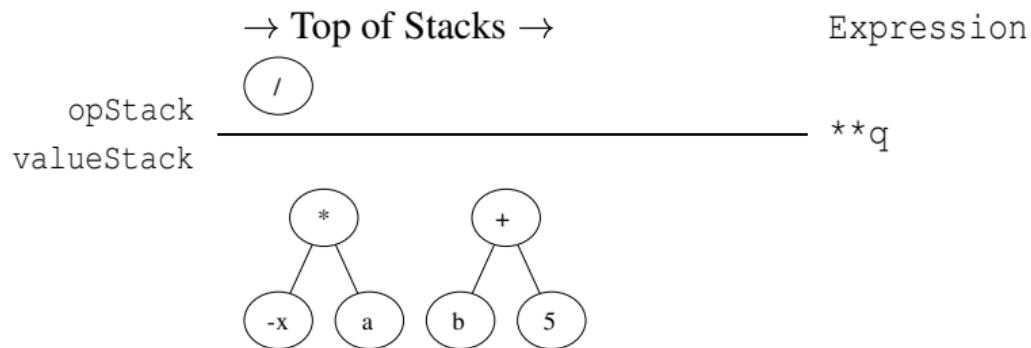
$-x * a / (b + 5) ^\star q$



Recursive call returns — place subexpression tree on valStack

The Shunting Yard Algorithm (Ex 2)

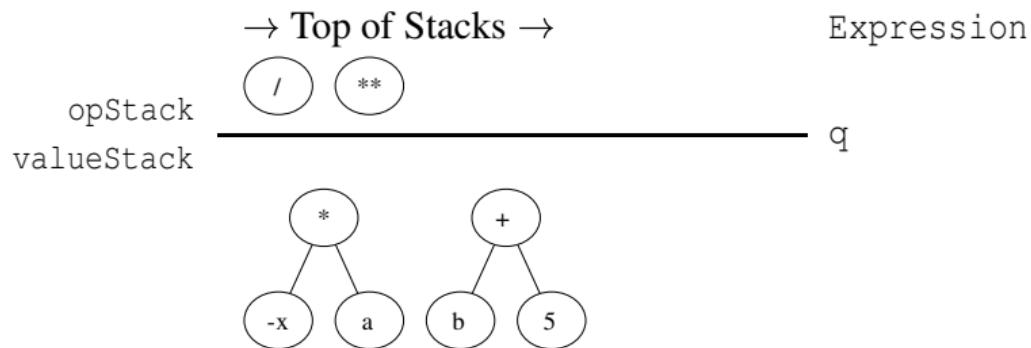
$-x * a / (b + 5) ^\star \star q$



Expression's **right-associative** $^\star \star$ precedence is $\geq /$ (opStack) precedence

The Shunting Yard Algorithm (Ex 2)

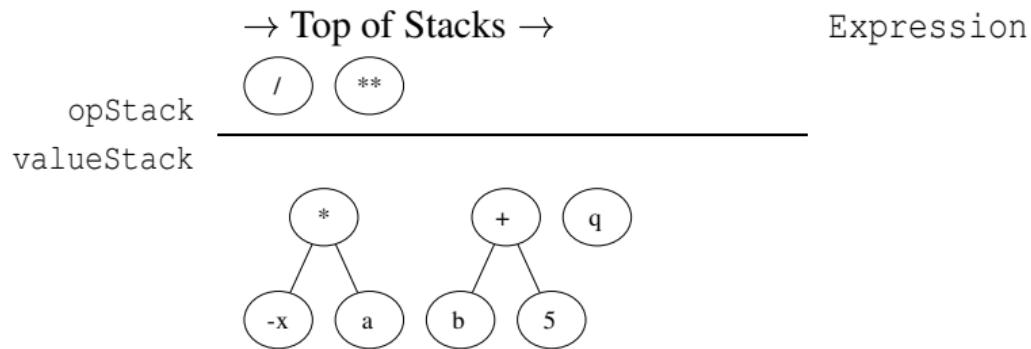
$-x * a / (b + 5) ^\star\star q$



Push operation $**$ onto opStack

The Shunting Yard Algorithm (Ex 2)

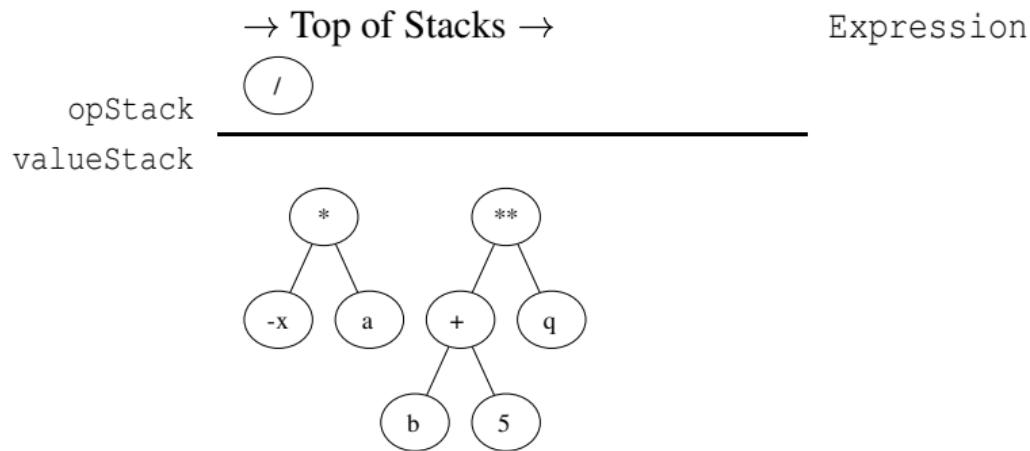
$-x * a / (b + 5) ^\star\star q$



Push value q onto valStack

The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ^\star q$



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

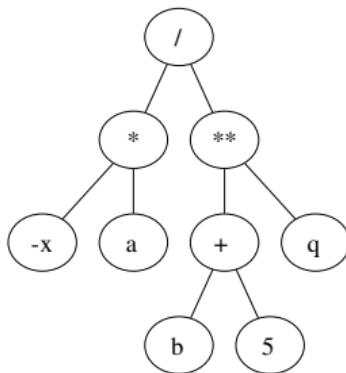
The Shunting Yard Algorithm (Ex 2)

$-x * a / (b + 5) ^\star q$

→ Top of Stacks →

Expression

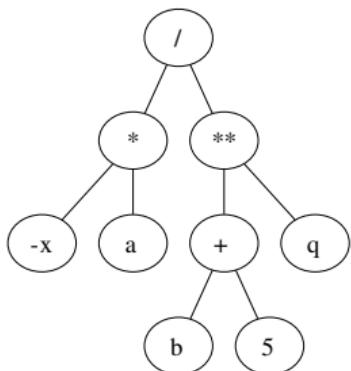
opStack
valueStack



The top operation on the opStack binds with the top two elements of the valueStack the result is a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

$-x * a / (b + 5) ^\star q$

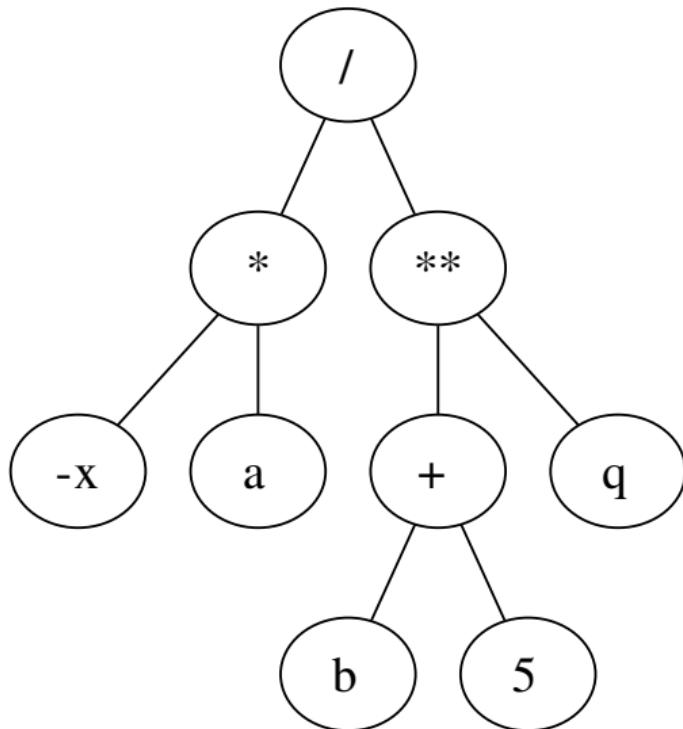


← Expression Tree!

Notice how we handled parenthetical grouping with recursion — (...) results are always “low” on the tree.

The Next Step ...

$-x * a / (b + 5) ^\star q$



Now that we can generate **expression trees**, how do we take advantage of the tree structure to methodically generate **machine code**?