
Formality of Expressions

Mathematical expressions are made up of two things: values and operators.

Values may be either variables (x, stockPrice) or literal values (3, 14, 3.14E2).

(Binary) operators are: addition, subtraction, multiplication (*), division (/), modulus (%),

and exponentiation (**).

◮ Binary operators always take two arguments, conventionally called the lhs and rhs.

lhs + rhs

◮ All binary operators have two important properties: precedence and associativity.

Mathematical Precedence

Faced with a programming language expression such as:

a * b + 3 ** x / 2

in what order are the operations performed?

Mathematical Precedence

Faced with a programming language expression such as:

a * b + 3 ** x / 2

in what order are the operations performed?

When? Precedence Operations

First Highest ** (exponentiation)

* / % (multiplicative class)

Last Lowest + - (additive class)

We are sure you remember this as “please excuse my dear aunt sally.”

Operator Associativity

Faced with a programming language expression such as:

a - b - c

in what order are the same-precedence operations performed? Yes, you already know this because

it has been drilled into your brain along with “Aunt Sally”: left-to-right evaluation!

(a - b) - c

Left-to-right evaluation comes from the left-associative property of addition and multiplicative

class operations.

Why? Because the middle term b is associated with the operator to its left.

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are

some right-associative operators?

Exponentiation

5 x y in programming→ 5 ** x ** y
right associative→ 5 ** (x ** y)

The middle term is associated with the operator on its right.

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are

some right-associative operators?

Assignment (=) in C, C++, Python, Java, . . .

The following two code samples are equivilent, due to the right-associativity of value assignment

a = c = 3 c = 3

a = c

The middle term is associated with the operator on its right.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

We begin with an empty valueStack and opStack, and traverse the elements of an expression

from left to right.

→ Top of Stacks→ Expression

opStack
3+a+b**5**q

valueStack

Begin. . .

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+a+b**5**q

valueStack

3

Push value 3 onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

a+b**5**q
valueStack

3

Push operation + onto opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

+b**5**q
valueStack

3 a

Push value a onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

+b**5**q
valueStack

3 a

Expression’s left-associative + precedence is

≤ + (opStack) precedence→ pop the opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+b**5**q

valueStack

+

3 a

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

b**5**q
valueStack

+

3 a

Push operation + onto opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

5q
valueStack

+

3 a

b

Push value b onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

5q
valueStack

+

3 a

b

Expression’s right-associative ** precedence is ≥ + (opStack) precedence

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ **

5**q
valueStack

+

3 a

b

Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ **

**q
valueStack

+

3 a

b 5

Push value 5 onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ **

**q
valueStack

+

3 a

b 5

Expression’s right-associative ** precedence is ≥ ** (opStack) precedence

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ ** **

q
valueStack

+

3 a

b 5

Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ ** **

valueStack

+

3 a

b 5 q

Push value q onto valStack

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+ **

valueStack

+

3 a

b **

5 q

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack
+

valueStack

+

3 a

**

b **

5 q

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

→ Top of Stacks→ Expression

opStack

valueStack

+

+ **

3 a b **

5 q

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3 + a + b ** 5 ** q

+

+ **

3 a b **

5 q

← Expression Tree!

Notice how right-associative exponentiation

must be calculated first — results of higher

precedence operations are the children of lower

precedence ops.

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

Try drawing the expression tree first . . .

can you predict the algorithm results?

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

We begin with an empty valueStack and opStack, and traverse the elements of an expression

from left to right.

→ Top of Stacks→ Expression

opStack
-x*a/(b+5)**q

valueStack

Begin. . .

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
*a/(b+5)**q

valueStack

-x

Push value -x onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
*

a/(b+5)**q
valueStack

-x

Push operation * onto opStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
*

/(b+5)**q
valueStack

-x a

Push value a onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
*

/(b+5)**q
valueStack

-x a

Expression’s left-associative / precedence is

≤ * (opStack) precedence→ pop the opStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/(b+5)**q

valueStack

*

-x a

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/

(b+5)**q
valueStack

*

-x a

Push operation / onto opStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/

(...)**q
valueStack

*

-x a

Recursive call for parenthetical grouping

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
b+5

valueStack

Begin the recursive call for subexpression tree

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
+5

valueStack

b

Push value b onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
+

5
valueStack

b

Push operation + onto opStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
+

valueStack

b 5

Push value 5 onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack

valueStack

+

b 5

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/

**q
valueStack

*

-x a

+

b 5

Recursive call returns — place subexpression tree on valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/

**q
valueStack

*

-x a

+

b 5

Expression’s right-associative ** precedence is ≥ / (opStack) precedence

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/ **

q
valueStack

*

-x a

+

b 5

Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/ **

valueStack

*

-x a

+

b 5

q

Push value q onto valStack

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack
/

valueStack

*

-x a

**

+ q

b 5

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

-x * a / (b + 5) ** q

→ Top of Stacks→ Expression

opStack

valueStack

/

* **

-x a + q

b 5

The top operation on the opStack binds with the top two elements of the valueStack the result is

a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

-x * a / (b + 5) ** q

/

* **

-x a + q

b 5

← Expression Tree!

Notice how we handled parenthetical grouping

with recursion — (. . .) results are always “low”

on the tree.

The Next Step . . .

-x * a / (b + 5) ** q

/

* **

-x a + q

b 5

Now that we can generate expression trees, how

do we take advantage of the tree structure to

methodically generate machine code?

