Formality of Expressions

Mathematical expressions are made up of two things: values and operators.

Values may be either variables (x, stockPrice) or literal values (3, 14, 3.14E2).

(Binary) operators are: addition, subtraction, multiplication (*), division (/), modulus (%),
and exponentiation (**).

» Binary operators always take two arguments, conventionally called the lhs and rhs.
lhs + rhs
» All binary operators have two important properties: precedence and associativity.

Mathematical Precedence

Faced with a programming language expression such as:
a*b+3*x /2

in what order are the operations performed?

Mathematical Precedence

Faced with a programming language expression such as:

a*b+3* x /2

in what order are the operations performed?

When? Precedence Operations

First Highest ** (exponentiation)
* /% (multiplicative class)
Last Lowest + - (additive class)

We are sure you remember this as “please excuse my dear aunt sally.”

Operator Associativity

Faced with a programming language expression such as:
a-b-c

in what order are the same-precedence operations performed? Yes, you already know this because
it has been drilled into your brain along with “Aunt Sally”: left-to-right evaluation!

(a = b) - c

Left-to-right evaluation comes from the left-associative property of addition and multiplicative
class operations.

Why? Because the middle term b is associated with the operator fo its left.

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are
some right-associative operators?

Exponentiation

in programming right associative
— 5**X**y — 5**(X**y)

5%

The middle term is associated with the operator on its right.

Right Associativity

Left-associative operators are pretty common in both mathematics and programming, what are
some right-associative operators?

Assignment (=) in C, C++, Python, Java, ...

The following two code samples are equivilent, due to the right-associativity of value assignment

The middle term is associated with the operator on its right.

The Shunting Yard Algorithm (Ex 1)

3+a+b**5 ¥k g

We begin with an empty valueStack and opStack, and traverse the elements of an expression
from left to right.

— Top of Stacks — Expression
opStack

3tatb**5%*qg
valueStack

Begin. ..

The Shunting Yard Algorithm (Ex 1)

3+a+b**5 ¥k g

— Top of Stacks — Expression
opStack

+atb**5%*qg
valueStack

&

Push value 3 onto valStack

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack @
valueStack

ath**5**g

Push operation + onto opStack

The Shunting Yard Algorithm (Ex 1)

3+a+b**5 ¥k g

— Top of Stacks — Expression

opStack @
valueStack

+b**5**q

Push value a onto valStack

The Shunting Yard Algorithm (Ex 1)

3+a+b**5 ¥k g

— Top of Stacks — Expression

opStack @
valueStack

Expression’s left-associative + precedence is
< + (opStack) precedence — pop the opStack

+b**5**q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression
opStack

+b**5**q
valueStack

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::>

valueStack
(+)
G @

Push operation + onto opStack

b**5**q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::>

valueStack

Push value b onto valStack

5q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::>

valueStack

5q

&

Expression’s right-associative ** precedence is > + (opStack) precedence

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::> <::>

valueStack
Ol
G @

Push operation ** onto opStack

5**q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::> <::>

valueStack
@
10

Push value 5 onto valStack

**q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::> <::>

valueStack

Expression’s right-associative ** precedence is > ** (opStack) precedence

**q

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack @ @ @

valueStack
@
G @

Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack @ @ @

valueStack ° @ @ @
2 L

Push value g onto valStack

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

— Top of Stacks — Expression

opStack <::> <::>

valueStack
°
SIONOIO

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3+a+b**5 ¥k g

— Top of Stacks — Expression

opStack <::>

valueStack
éq@ s
010
10

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3+a+b x5 ¥k g

— Top of Stacks — Expression
opStack

valueStack

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

3+a+b* 5 *rqg

+ Expression Tree!

° ° Notice how right-associative exponentiation
must be calculated first — results of higher

° ° o e precedence operations are the children of lower
precedence ops.
@

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** ¢

Try drawing the expression tree first ...

can you predict the algorithm results?

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

We begin with an empty valueStack and opStack, and traverse the elements of an expression
from left to right.

— Top of Stacks — Expression
opStack

—wk + * %
valueStack x*a/ (b¥5)**q

Begin. ..

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression
opStack

* + * %
valueStack a/ (bt5)**q

©

Push value -x onto valStack

The Shunting Yard Algorithm (Ex 2)

-x *a / (b+5) *¢q

— Top of Stacks — Expression

opStack <::>
valueStack

a/ (b+5) **q

Push operation * onto opStack

The Shunting Yard Algorithm (Ex 2)

-x *a / (b+5) *¢q

— Top of Stacks — Expression

opStack <::>
valueStack

/ (b+5) **q

Push value a onto valStack

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

— Top of Stacks — Expression

opStack <::>
valueStack

/ (b+5) **q

Expression’s left-associative / precedence is
< * (opStack) precedence — pop the opStack

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

— Top of Stacks — Expression
opStack

b+5) **
valueStack /1)*q

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression

opStack <::>

valueStack
©
@

Push operation / onto opStack

(b+5) **q

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression

opStack @

valueStack
©
@

Recursive call for parenthetical grouping

(...)**q

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) **q

— Top of Stacks — Expression
opStack

b+5
valueStack

Begin the recursive call for subexpression tree

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression
opStack

+5
valueStack

O

Push value b onto valStack

The Shunting Yard Algorithm (Ex 2)

-x *a / (b+5) *¢q

— Top of Stacks — Expression

opStack <::>
valueStack

Push operation + onto opStack

The Shunting Yard Algorithm (Ex 2)

-x *a / (b+5) *¢q

— Top of Stacks — Expression

opStack <::>
valueStack

Push value 5 onto valStack

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

— Top of Stacks — Expression
opStack

valueStack

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

— Top of Stacks — Expression

opStack @

Valuestack

Recursive call returns — place subexpression tree on valStack

**q

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) ** q

— Top of Stacks — Expression

opStack @

Valuestack

Expression’s right-associative ** precedence is > / (opStack) precedence

**q

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression

opStack @ @

Valuestack

Push operation ** onto opStack

The Shunting Yard Algorithm (Ex 2)

—x*a/(b+5)**q

— Top of Stacks — Expression

opStack <::> <::>

valueStack
S101010

Push value g onto valStack

The Shunting Yard Algorithm (Ex 2)

-x *a / (b+5) *¢q

— Top of Stacks — Expression

opStack <::>

valueStack

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 2)

-x *a/ (b+5) *q

— Top of Stacks — Expression
opStack

valueStack

The top operation on the opStack binds with the top two elements of the valueStack the result is
a new value that is pushed onto the valueStack.

The Shunting Yard Algorithm (Ex 1)

-x *a/ (b+5) ** q

(1)
° ° + Expression Tree!
Notice how we handled parenthetical grouping
° ° 0 ° with recursion — (...) results are always “low’
on the tree.
OO

’

The Next Step ...

-x *a / (b+5) **¢q

c e Now that we can generate expression trees, how
do we take advantage of the tree structure to

° ° Q Q methodically generate machine code?

