
Compilers Learning Group Assignment #17 LR Knitting

All students should begin reading chapter 6 up to and including §6.2 in preparation for this assignment and the next

lecture.

Distribute the following questions across the members of your group. You will share your solutions (and most impor-

tantly the method of your solutions) during the next lecture period. Divide up the questions so that each question has

at least two solutions from different group members.

For questions 1 and 2, you can find the shift reduce table on the following page of this assignment. For questions 3–5,

the authors shift reduce tables are in the book. The authors use squared states for shift-X operations, and unadorned

production rule numbers for reduce-n operations.

Depending on where we are in lecture, we may not yet have seen shift-reduce tables where whole rows are not

consumed with “Reduce-Y” actions. Don’t let the shift-reduce tables in this LGA throw you, they are just more

specific under which conditions reductions should be performed. The reading covers this also, and we’ll discuss it in

lecture; if not already, then soon.

All these questions are essentially the same, which means understanding this process is important for the course.

You will be writing an LR compiler, so you want to become familiar with the algorithm sooner than later. I encourage

students to mimic lecture slides and actually draw the subtrees that slide to and fro the stack and input deque; “in the

back of your head,” while you work these problems out, many of you will be contemplating how to represent these

data structures in your preferred coding language, and that’s a good thing.

1. Page 224, question 2a

2. Page 224, question 2b

3. Page 224, question 3a

4. Page 224, question 3b

5. Page 224, question 3c

6. Consider the following grammar along with its shift-reduce parsing table shown below.

(a) Show the steps taken by the LR parsing algorithm (the ”knitting” algorithm) for the input:

op op op cl cl

(b) What famous language is this? Albeit with different, perhaps obfuscated, grammar symbols?

Rules

1 S → D $
2 D → op D

3 D → Z

4 Z → op Z cl

5 Z → λ

cl op $ D Z

0 r-5 sh-1 r-5 sh-2 sh-3

1 r-5 sh-1 r-5 sh-4 sh-5

2 sh-6

3 r-3

4 r-2

5 sh-7 r-3

6 Reduce 1

7 r-4 r-4

sh-X : shift input to stack, go to state X ; r-Y “reduce” the top of

the stack with production rule Y .

Compilers Learning Group Assignment #17 LR Knitting

Table entries: sh-X : shift input to stack, go to state X ; r-Y “reduce” the top of the stack with production rule Y .

For question 1:

num plus $ E

0 sh-1 sh-2 sh-3

1 r-3 r-3 r-3

2 sh-1 sh-2 sh-4

3 sh-5

4 sh-1 sh-2 sh-6

5 Reduce 1

6 r-2 r-2 r-2

For question 2:

a b c d q $ S A C B Q

0 sh-1 sh-2 r-8 r-8 r-8 r-8 sh-3 sh-4 sh-5

1 sh-2 r-8 r-8 r-8 r-8 sh-6

2 sh-2 r-8 r-8 r-8 r-8 sh-7

3 sh-8

4 sh-9 r-4 r-4 sh-10

5 r-10 sh-11 r-10 sh-12

6 sh-9 r-4 r-4 sh-13

7 r-7 r-7 r-7 r-7

8 Reduce 1

9 r-3 r-3

10 r-2

11 r-9 r-9

12 r-6 r-6

13 sh-14

14 r-5 r-5

Page 2

