Scanning

Goal: Reading through source listing and identifying tuples of
(TOKENTYPE, SrcValue) for the parser to use.

Scanner = Lexer = Lexical Analysis

Makes you wonder: “What is a lexicon?”

Scanning

Goal: Reading through source listing and identifying tuples of
(TOKENTYPE, SrcValue) for the parser to use.

Scanner = Lexer = Lexical Analysis
Makes you wonder: “What is a lexicon?”
The scanner doesn’t enforce syntax rules (that’s a parser’s job).

So, what kind of errors does a scanner detect?

Scanning

Goal: Reading through source listing and identifying tuples of
(TOKENTYPE, SrcValue) for the parser to use.

Scanner = Lexer = Lexical Analysis
Makes you wonder: “What is a lexicon?”
The scanner doesn’t enforce syntax rules (that’s a parser’s job).

So, what kind of errors does a scanner detect? (some examples:)
» Invalid character code (binary file? utf-8? not utf-87?)
» An invalid sequence of characters (my ! name@domain.com) for a TOKENTYPE of EmailAddr)
» Missing characters (1.0e+ for a TOKENTYPE of FLOAT)

The fundamental go-to tool for program source scanning are Regular Expressions

Regular Expression Theory

Given:

>
>
>

>

A finite alphabet of characters X
The empty set 0 (required for completeness and closure proofs)
A an empty string
A£0D A0 0ZA
A is also a RE that matches only a zero length string (a little bit of a tautology).
€ is another common symbol, our book uses A so that’s what we’ll use.
The symbol s € ¥ (one character) is a RE that matches only s.
A set of characters from X, T written in RE notation (a|b|c) that matches only one character
of the input.
Written out in mathy set notation as 7' = {a,b,c} (as you would expect).
Y is itself a RE which matches one character from the alphabet. A period . is a convenient
keyboard accessible synonym for the RE X.

Notice: sets are upper case (either Latin or Greek), characters are lower case!

Regular Expression Theory

Let A, B be REs and we define RE Operations (highest precedence last):

Alternation A|B = {x|x € A ORx € B} x might be single characters or strings. x € A
means character sequence x is matched by RE A.

Concatentation AB={xy |x € A,y € B}

Kleene Closure (KLAY-NEE)! Ax =A* = {A} U {xAx |x € A}
Simply put: “zero or more As”. Notice this is postfix notation (the operator
comes after its argument(s)! We just use * at the keyboard for

Grouping Parenthetical grouping overrides operator precedence (as expected).

1ht:ps ://en.wikipedia.org/wiki/Kleene_algebra

https://en.wikipedia.org/wiki/Kleene_algebra
https://en.wikipedia.org/wiki/Kleene_algebra

Regular Expression Theory

Let A, B be REs and we define RE Operations (highest precedence last):

Alternation A|B = {x|x € A OR x € B} x might be single characters or strings. x € A means character
sequence x is matched by RE A.

Concatentation AB={xy |x €A,y € B}

Kleene Closure (KLAY-NEE)! Ax=A* = {A} J {xAx |x€ A}
Simply put: “zero or more As”. Notice this is postfix notation (the operator comes after its
argument(s)! We just use * at the keyboard for x

Grouping Parenthetical grouping overrides operator precedence (as expected).

Some examples with: £ = {a,b,c,...,z}, X ={f,g}, Y = {m}, Z = {s,t}.
a\ matches "a” Aa matches "a” a|A matches "a” or
XYZ matches "fms”, "fmt”, "gms” or "gmt” X|Y|Z matches "f”, "g”, "m”, "s” or "t
X(Y|Z) matches "fm”, "gm”, “fs”, "ft”, "gs” or "gt”
X (Y|Z%) matches "fm”, "gm”, "f", ’g", "fsts”, "fssss”, ...

Regular Expression Theory

Let A, B be REs and we define RE Operations (highest precedence last):

Alternation A|B = {x|x € A OR x € B} x might be single characters or strings. x € A means character
sequence x is matched by RE A.
Concatentation AB={xy |x €A,y € B}

Kleene Closure (KLAY-NEE)! Ax=A* = {A} J {xAx |x€ A}
Simply put: “zero or more As”. Notice this is postfix notation (the operator comes after its
argument(s)! We just use * at the keyboard for x

Grouping Parenthetical grouping overrides operator precedence (as expected).

Some examples with: £ = {a,b,c,...,z}, X ={f,g}, Y = {m}, Z = {s,t}.
What strings do XY |Z* match?

Regular Expression Theory

Let A, B be REs and we define RE Operations (highest precedence last):

Alternation A|B = {x|x € A OR x € B} x might be single characters or strings. x € A means character
sequence x is matched by RE A.

Concatentation AB={xy |x €A,y € B}

Kleene Closure (KLAY-NEE)! Ax=A* = {A} J {xAx |x€ A}
Simply put: “zero or more As”. Notice this is postfix notation (the operator comes after its
argument(s)! We just use * at the keyboard for x

Grouping Parenthetical grouping overrides operator precedence (as expected).
Some examples with: £ = {a,b,c,...,z}, X ={f,g}, Y = {m}, Z = {s,t}.
What strings do XY |Z* match?

Concatenation has higher precedence than alternation (|) and % “binds” to the RE preceding it, so
XY |Zx = (XY)|(Z*) and matches:
"fm”, "gm”, ”, ”s”, "ts”, "ststttss”, ...

Regular Expression Outcomes

Closure Given our definitions and operations, REs are closed — any combination via these
operators is another regular expression.
Regular Set is the collection of character strings that are generated by a non-empty set of regular
expressions.
"generated” = "matches” = "accepted” = "detected’="verified”

Regular Language is a sequence of symbols whose syntax can be defined (generated) by a RE.

Token Class (in the context of program source scanning, or "lexing”) is a sequence of characters
accepted by a RE.

So many languages, let’s begin our Taxonomy!...

Some languages can use REs not only for tokenization, but also for syntax verification (aka
“parsing”).

eg: many “config file” formats, many assembly languages.

Note that these steps don’t use the same RE, in practice they use several different REs for
tokenization and one RE for parsing.

Other languages (pretty much all high level lanugages that you are most familier with) use REs
just for tokenization, and require more sophisticated grammars and language algorithms for
parsing.

I know of no well known languages that require sophisticated grammars and language algorithms
for tokenization.
('m sure there are some out there, but I'm not familiar with them. . .)

... a little sugar on top :)

Some common utility operations that are built on the fundamental RE operations (these would be
lemmas in RE Theory)
Positive Closure AT = {aA% |a € A}
Simply put: one or more instances of a regular set of A. When at the keyboard,
simply type + and forego the superscript.
Inverse Character Sets Given IT a set of characters from X,

Not(IT) = {x| x e X AND x ¢ I1}

Written for many RE engines as [“abc].
Inverse Regular Sets Given A a RE,

Not(A) = {x | x € {strings fromX} AND x ¢ A}

Finite Repetition A* = {x1x,...xx|x; € A AND k > 0}
There are several different ways various RE engines represent this at the keyboard.

	Regular Expressions

