
Ambiguity is Clearly a Bad Thing

Mathematics is an unambiguous language, given an expression:

xz+2 +100+ y+ z(2+ab)

It has only one value (for a collection of variable values)

Ambiguity is Clearly a Bad Thing

Mathematics is an unambiguous language, given an expression:

xz+2 +100+ y+ z(2+ab)

It has only one value (for a collection of variable values)

Programming languages may permit more than one way to express results or outcomes. . .

print("Hello world") Python sys.stdout.write("Hello world\n")

SELECT name FROM students; SQL SELECT s.name FROM students AS s;

x = x + 1; C/C++ ++x;

There is still only one way to interpret the intent of the programmer.

Defining a Language

Here is a simple grammar that defines a

language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

By Convention. . .

1. the special symbol $ means the end of input

2. UPPER case terms are non-terminals, they can appear on either side of the→

3. terms other than $ and non-terminals are called terminals, they can appear only on the

right-hand side of→

4. the vertical bar, |, is read as “OR”

Programs consist of only terminals.

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Is the single token w permitted by this grammar?

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Is the single token w permitted by this grammar? Yes

S → A $

S → w $ ←Parse Tree!

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

What about x s q x ?

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

What about x s q x ? Yes

S → x B x $

S → x s q x $

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

s s q t

w x q s x

x q s x

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

s s q t Yes

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

w x q s x ?

Defining a Language

A simple grammar that defines a language:

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

w x q s x No
Syntax Error: did not expect x after w.

Defining a Language

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

x q s x ?

Defining a Language

S → A $ | x B x $

A → s B t | w

B → q s | s q

Which of these are permitted?

x q s x Yes

Defining a Language

a. The parse tree leaves are special, what do

they hold?

b. What grammar parts are in the non-leaf

nodes?

S → A $ | x B x $

A → s B t | w

B → q s | s q

Defining a Language

w

s q s t

s s q t

x q s x

x s q x

S → A $ | x B x $

A → s B t | w

B → q s | s q

Clearly, there are a limited number of terminal sequences permitted by this grammar.

It is FINITE — we certainly don’t want programming languages with this property.

Recursive Language Definitions

S → QLIST $

QLIST → Q QLIST

| λ

Q → a b c

| k

| s t u

Here is a recursive grammar that permits an infinite

collection of terminal sequences.

One Last Convention. . .

5. the special symbol λ means an empty sequence of tokens — AKA “nothing”

Recursive Language Definitions

S → QLIST $

QLIST → Q QLIST

| λ

Q → a b c

| k

| s t u

Here is a recursive grammar that permits an infinite

collection of terminal sequences.

What happens with multiple Qs?

k a b c k

Recursive Language Definitions

Program

k a b c k

parsed by language

S → QLIST $

QLIST → Q QLIST

| λ

Q → a b c

| k

| s t u

→

Derivation

S → QLIST $

S → Q QLIST $

S → k QLIST $

S → k Q QLIST $

S → k a b c QLIST $

S → k a b c Q QLIST $

S → k a b c k QLIST $

S → k a b c k λ $

Recursive Language Definitions

Program

k a b c k

parsed by language

S → QLIST $

QLIST → Q QLIST

| λ

Q → a b c

| k

| s t u

→

Parse Tree

A Simple Programming Language

PROGRAM → SLIST $

SLIST → S SLIST

| λ

S → var = EXPR

| i f EXPR then (SLIST)
| i f EXPR then (SLIST) else (SLIST)
| while EXPR do (SLIST)
| repeat (SLIST) while EXPR

| repeat (SLIST) until EXPR

EXPR → expr

| var

A Simple Programming Language

PROGRAM → SLIST $

SLIST → S SLIST

| λ

S → var = EXPR

| i f EXPR then (SLIST)
| i f EXPR then (SLIST) else (SLIST)
| while EXPR do (SLIST)
| repeat (SLIST) while EXPR

| repeat (SLIST) until EXPR

EXPR → expr

| var

Which grammar rule means this is not a finite language?

Program Example A - Compilation Steps

I. Lexical analysis detects keywords, variable names,

expressions, and special symbols such as parenthesis

and equal.

II. The sequence of tokens is parsed using the grammar

rules into a parse tree.

III. The parse tree is simplified into a sequence of

assignments with comparisons and branches

(jumps).

IV. Assign memory locations for variables

V. Assign registers and instructions for expressions

VI. Generate comparision and jump instructions for

control structures

VII. . . . and then we can generate machine instructions!

a = 3

c = (27)

b = a*10+1

repeat (

b = b-a/2+1

a = a+1

) until b<0

a = 3

c = (27)

b = a*10+1

repeat (

b = b-a/2+1

a = a+1

) until b<0

Lexical

Analysis

Describes

Tokens→
{var,a} = {expr,3}

{var,c} = {expr,(27)}

{var,b} = {expr,a*10+1}

repeat (

{var,b} = {expr,b-a/2+1}

{var,a} = {expr,a+1}

) until {expr,b<0}

for

Grammar

Analysis→
PROGRAM → SLIST $

SLIST → S SLIST

| λ

S → var = EXPR

| i f EXPR then (SLIST)
| i f EXPR then (SLIST) else (SLIST)
| while EXPR do (SLIST)
| repeat (SLIST) while EXPR

| repeat (SLIST) until EXPR

EXPR → expr

| var

. . . that generates→

. . . a Parse Tree

Simplify Statement S Nodes

De-curse SLIST

Programs are just an SLIST that HALTs

Generate RHS Expression Trees

Assign Memory Locations for Variables

Variable Memory Address

a @FF

c @FE

b @FD

Assign Registers and Instructions for Expressions

Generate Instructions for Control Structures

(Pseudo) Assembly Code

LOAD R4 0x03

STORE R4 @FF

LOAD R4 0x1B

STORE R4 @FE

LOAD R4 @FF

LOAD R5 0x0A

R4 <- R4 * R5

LOAD R5 0x01

R4 <- R4 + R5

STORE R4 @FD

LABEL A

LOAD R4 @FD

LOAD R5 @FF

LOAD R6 0x02

R5 <- R5 / R6

R4 <- R4 - R5

LOAD R5 0x01

R4 <- R4 + R5

STORE R4 @FD

LOAD R4 @FF

LOAD R5 0x01

R4 <- R4 + R5

STORE R4 @FF

LOAD R3 @FD

LOAD R4 0x00

R3 <- R3 < R4

LOAD R0 0x00

GOTO A if R3 = R0

HALT

An assembler will take these

instructions and generate the

actual machine code,

resolving LABELs and GOTOs,

and perhaps performing some

low-level optimizations such as

removing redundant LOADs and

STOREs.

Compilers

We’ve looked at the essential steps taken to generate machine code from a high-level programming

language.

Whether you use an interpretted language within a “virtual machine” such as Python, Ruby, Lisp,

Java, . . . or a language compiled “down to machine code” such as C, C++, or Fortran — you use a

compiler of some sort, and that compiler pretty much follows all of these steps in order to

(eventually) execute your instructions on a CPU.

The design of computer languages and the parsing algorithms associated with them is one of the

classic and fundamental topics in Computer Science.

Program Example B - Compilation Steps

I. Lexical analysis detects keywords, variable names,

expressions, and special symbols such as parenthesis

and equal.

II. The sequence of tokens is parsed using the grammar

rules into a parse tree.

III. The parse tree is simplified into a sequence of

assignments with comparisons and branches

(jumps).

IV. Assign memory locations for variables

V. Assign registers and instructions for expressions

VI. Generate comparision and jump instructions for

control structures

VII. . . . and then we can generate machine instructions!

x = (a+b)/23

if x<3 then (

s = 1

) else (

t = 2

)

x = (a+b)/23

if x<3 then (

s = 1

) else (

t = 2

)

Lexical

Analysis

Describes

Tokens→
{var,x} = {expr,(a+b)/23}

if {expr,x<3} then (

{var,s} = {expr,1}

) else (

{var,t} = {expr,2}

)

for

Grammar

Analysis→
PROGRAM → SLIST $

SLIST → S SLIST

| λ

S → var = EXPR

| i f EXPR then (SLIST)
| i f EXPR then (SLIST) else (SLIST)
| while EXPR do (SLIST)
| repeat (SLIST) while EXPR

| repeat (SLIST) until EXPR

EXPR → expr

| var

. . . that generates→

. . . a Parse Tree

Simplify Statement S Nodes

De-curse SLIST

Programs are just an SLIST that HALTs

Generate RHS Expression Trees

Assign Memory Locations for Variables

Variable Memory Address

x @FF

a @FE

b @FD

s @FC

t @FB

Assign Registers and Instructions for Expressions

Generate Instructions for Control Structures

(Pseudo) Assembly Code

LOAD R4 @FE

LOAD R5 @FD

R4 <- R4 + R5

LOAD R5 0x17

R4 <- R4 / R5

STORE R4 @FF

LOAD R3 @FF

LOAD R4 0x03

R3 <- R3 < R4

LOAD R0 0x00

GOTO B if R3 = R0

LOAD R4 0x01

STORE R4 @FC

JUMP TO A

LABEL B

LOAD R4 0x02

STORE R4 @FB

LABEL A

HALT

An assembler will take these

instructions and generate the

actual machine code,

resolving LABELs and GOTOs,

and perhaps performing some

low-level optimizations such as

removing redundant LOADs and

STOREs.

