Scanner Data Structures for Wiki Example — First Token

Ch Loc Matching Token Set Best Match Length
1: 1:p { pgrs, opqr, endsq, twosmallwords, IGNORE } pars 1
1: 2. g {pqrs, opgr, endsq, twosmallwords } pqrs 2
13 r { pars, opqr, endsq, twosmallwords } pars 3
1: 4: p {pqrs, opgr, endsq, twosmallwords } pqrs 4
1: 5: g { pars, opqr, endsq } pgrs 5
117: ¢ {pars, opqr, endsq } pqrs 17
1:18: ¢ { pars, opqr, endsq } pars 18
1:19:\n { endsq } pars 18
247: p { endsq } pars 18
2:18:5p { endsq } pars 18
2:19: \ 0 Pars 18
emit pgrs pgrpqrpppgqgeprrrr 1 1

Scanner Data Structures for Wiki Example — First Token

Ch Loc Matching Token Set Best Match Length
1: 1:p { pgrs, opqr, endsq, twosmallwords, IGNORE } pars 1
1: 2. g {pqrs, opgr, endsq, twosmallwords } pqrs 2
13 r { pars, opqr, endsq, twosmallwords } pars 3
1: 4: p {pqrs, opgr, endsq, twosmallwords } pqrs 4
1: 5. g { pars, opqr, endsq } pars 5
117: ¢ { pars, opqr, endsq } pars 17
1:18: ¢ { pars, opqr, endsq } pars 18
1:19:\n { endsq } pars 18
247: p { endsq } pars 18
2:18:5p { endsq } pars 18
2:19: \ 0 Pars 18
emit pgrs pgrpqrpppgqgeprrrr 1 1

Notice that we could not be sure the match was a pgrs token of length 18 until the endsqg matching failed.
Now we have to start over again at line 1 character 19...

A Common Misconception

Here is a common misconception (misunderstanding?):

Token ids are assigned based on which DFAs did not fail during scan-
ning.

Why is this statement wrong?

A Common Misconception

Here is a common misconception (misunderstanding?):
Token ids are assigned based on which DFAs did not fail during scan-

ning.

Why is this statement wrong? Because all the DFAs fail before a decision is made!

Token ids are assigned based on match length (and definition file ordering in the case
of match length ties).

1Technically there is an edge case where this does not hold — but it is true most of the time.

Token Detection from Line 1 Character 19 (Second Token)

Ch Loc || Matching Token Set || Best Match Length

1:19:\n || { endsq, IGNORE } IGNORE 1

2: 1:r { endsq } IGNORE 1

2:17: p {endsq } IGNORE 1

2:18:SP {'endsq } IGNORE 1

2:19: \ 0 IGNORE 1
emit IGNORE x0a 1 19

Token Detection from Line 1 Character 19 (Second Token)

Ch Loc || Matching Token Set || Best Match Length

1:19:\n || { endsq, IGNORE } IGNORE 1

2: 1:r { endsq } IGNORE 1

2:17: p {endsq } IGNORE 1

2:18:SP {'endsq } IGNORE 1

2:19: \ 0 IGNORE 1
emit IGNORE x0a 1 19

And we rewind some 19 characters and begin matching again at line 2 character 1...

Token Detection from Line 2 Character 1 (Third Token)

Ch Loc Matching Token Set Best Match Length
2: 1: ¢ || {pars, opar, endsq, twosmallwords, IGNORE } pars 1
2: 210 { opqr, endsq, twosmallwords } opqr 2
2:3:p { opgr, endsq, twosmallwords } opgr 3
2: 4:5P { endsq, twosmallwords } opgr 3
2: 5. r { endsq, twosmallwords } opgr 3
2:6: 0 { endsq, twosmallwords } opgr 3
2:7:p { endsq, twosmallwords } opgr 3
2: 8:5P { endsq, twosmallwords } twosmallwords 8
2: 9 r {'endsq } twosmallwords 8
2:10: o {'endsq } twosmallwords 8
2:18:5p {'endsq } twosmallwords 8
2:19: \ 0 twosmallwords 8
emit twosmallwords ropx20ropx20 2 1

Token Detection from Line 2 Character 1 (Third Token)

Ch Loc Matching Token Set Best Match Length
2: 1: ¢ || {pars, opar, endsq, twosmallwords, IGNORE } pars 1
2: 210 { opqr, endsq, twosmallwords } opqr 2
2:3:p { opgr, endsq, twosmallwords } opgr 3
2: 4:5P { endsq, twosmallwords } opgr 3
2: 5. r { endsq, twosmallwords } opgr 3
2:6: 0 { endsq, twosmallwords } opgr 3
2:7:p { endsq, twosmallwords } opgr 3
2: 8:5P { endsq, twosmallwords } twosmallwords 8
2: 9 r {'endsq } twosmallwords 8
2:10: o {'endsq } twosmallwords 8
2:18:5p {'endsq } twosmallwords 8
2:19: \ 0 twosmallwords 8
emit twosmallwords ropx20ropx20 2 1

Where do we “rewind” to in the token stream? How is this calculated from the data in the scanning trace?

Token Detection from Line 2 Character 1 (Third Token)

Ch Loc Matching Token Set Best Match Length
2:1:r { pgrs, opqr, endsq, twosmallwords, IGNORE } pars 1
2:2: 0 { opqr, endsq, twosmallwords } opqr 2
2: 3 p { opqr, endsq, twosmallwords } opqr 3
2: 4:5p { endsq, twosmallwords } opgr 3
2: 5 r { endsq, twosmallwords } opgr 3
2: 6: 0 { endsq, twosmallwords } opqr 3
2:7:p { endsq, twosmallwords } opgr 3
2: 8:5P { endsq, twosmallwords } twosmallwords 8
2: 9 r { endsq } twosmallwords 8
2:10: o {'endsq } twosmallwords 8
2:18:5p { endsq } twosmallwords 8
2:19: \ 0 twosmallwords 8
emit twosmallwords ropx20ropx20 2 1

Where do we “rewind” to in the token stream? How is this calculated from the data in the scanning trace?
...we rewind to the 8th character past 2:1:r.

Fourth Token from Line 2 Character 9

Ch Loc Matching Token Set Best Match Length
2: 9 r { pars, opqr, endsq, twosmallwords, IGNORE } pars 1
2:10: o { opgr, endsq, twosmallwords } opqr 2
2:111: p { opgr, endsq, twosmallwords } opqr 3
2:12:5p { endsq, twosmallwords } opqr 3
2:13:5P { endsq, twosmallwords } opgr 3
2:14:5P { endsq, twosmallwords } opgr 3
2:15: r { endsq, twosmallwords } opqr 3
2:16: o { endsq, twosmallwords } opqr 3
2:117: p { endsgq, twosmallwords } opqr 3
2:18:5P { endsq, twosmallwords } twosmallwords 10
2:19: \ 0 twosmallwords 10

emit twosmallwords ropx20x20x20ropx20 2 9

Fifth Token from Line 2 Character 9

Ch Loc || Matching Token Set || Best Match Length
2:19: \ [{ whack, IGNORE } IGNORE 1
2:20:SP { whack } IGNORE 1
2:21: r { whack } IGNORE 1
2:22: o { whack } IGNORE 1
2:23: p { whack } IGNORE 1
2:24:3p { whack } IGNORE 1
2:25:SP { whack } IGNORE 1
2:26: r { whack } IGNORE 1
2:27: o { whack } IGNORE 1
2:28: p { whack } IGNORE 1
2:29:5p { whack } IGNORE 1
2:30: \ { whack } whack 12
2:31:SP 0 whack 12
emit whack x5cooox5cx20x5cooox5c 2 19

Fifth Token from Line 2 Character 9

Ch Loc || Matching Token Set || Best Match Length
2:19: \ [{ whack, IGNORE } IGNORE 1
2:20:SP { whack } IGNORE 1
2:21: r { whack } IGNORE 1
2:22: o { whack } IGNORE 1
2:23: p { whack } IGNORE 1
2:24:3p { whack } IGNORE 1
2:25:SP { whack } IGNORE 1
2:26: r { whack } IGNORE 1
2:27: o { whack } IGNORE 1
2:28: p { whack } IGNORE 1
2:29:5p { whack } IGNORE 1
2:30: \ { whack } whack 12
2:31:SP 0 whack 12
emit whack x5cooox5cx20x5cooox5c 2 19

Recall that the whack token has explicit data associated with it in scan.u, this is why the source data does
not appear in the emitted output.

Sixth Token from Line 2 Character 31

ChLoc || Matching Token Set || Best Match Length
2:31:5P [{ endsq, IGNORE } IGNORE 1
2:32:\n { endsq } IGNORE 1
3 1:p { endsq } IGNORE 1
3: 2:\n { endsq } IGNORE 1
4:1: g {endsq } endsq 5
4: 2:5p { endsq } endsq 5
4: 3 r { endsq } endsq 5
6: 3: g {endsq } endsq 17
6: 4:5p {endsq } endsq 17
6: 5:\ 0 endsq 17

emit endsqg x20x0apx0aqgx20rx20sx20rx0agx0apx20g 2 31

Sixth Token from Line 2 Character 31

Ch Loc || Matching Token Set || Best Match Length
2:31:5P [{ endsq, IGNORE } IGNORE 1
2:32:\n { endsq } IGNORE 1

3 1:p { endsq } IGNORE 1

3: 2:\n { endsq } IGNORE 1
4:1: g {endsq } endsq 5
4: 2:5P { endsq } endsq 5

4: 3: r { endsq } endsq 5

6: 3: g {endsq } endsq 17
6: 4:5p {endsq } endsq 17
6: 5:\ 0 endsq 17
emit endsqg x20x0apx0agx20rx20sx20rx0agxlapx20q 2 31

More complicated? where do we “rewind” to in the token stream?

Sixth Token from Line 2 Character 31

Ch Loc || Matching Token Set || Best Match Length
2:31:5P [{ endsq, IGNORE } IGNORE 1
2:32:\n { endsq } IGNORE 1

3 1:p { endsq } IGNORE 1

3: 2:\n { endsq } IGNORE 1
4:1: g {endsq } endsq 5
4: 2:5P { endsq } endsq 5

4: 3: r { endsq } endsq 5

6: 3: g {endsq } endsq 17
6: 4:5p {endsq } endsq 17
6: 5:\ 0 endsq 17
emit endsqg x20x0apx0agx20rx20sx20rx0agxlapx20q 2 31

More complicated? where do we “rewind” to in the token stream?
...we rewind to 17 characters past the 2:31:SP where the match began.

Seventh and Eighth Tokens

Ch Loc || Matching Token Set || Best Match Length
6:4: SP { endsq, IGNORE } IGNORE 1
6:5: \ 0 IGNORE 1
emit IGNORE x20 6 4

Ch Loc || Matching Token Set || Best Match Length
6: 5: \ || {whack, IGNORE } IGNORE 1

6: 6: p { whack } IGNORE 1

6: 7: o { whack } IGNORE 1

6: 8: s { whack } IGNORE 1

6: 9:sp { whack } IGNORE 1
6:10: r { whack } IGNORE 1
6:11: o { whack } IGNORE 1
6:12: s { whack } IGNORE 1
6:13: p { whack } IGNORE 1
6:14: \ { whack } whack 10
6:15:5P 0 whack 10

emit whack x5cooox5cx20x5co00x5¢c 6 5

Nineth, Tenth, and Final Token

Ch Loc || Matching Token Set || Best Match Length
6:15:5P || { endsq, IGNORE } IGNORE 1
6:16: ¢ { endsq } IGNORE 1
6:17:\n { endsq } IGNORE 1

emit IGNORE x20 6 15

Ch Loc Matching Token Set Best Match Length

6:16: r || { pars, opgr, endsq, twosmallwords, IGNORE } pars 1

6:17:\n {endsq } pars 1
emit pagrs r 6 16

Ch Loc || Matching Token Set || Best Match ~ Length
6:17:\n || {endsq, IGNORE } || IGNORE 1
emit IGNORE x0a 6 17

These are missing the last “0” row of previous traces because there is no final character that eliminates the
“Matching Token Set” — it is the end-of-file that forces the “Best Match” to be emitted.

(I could have faked the slides to appear more similar, but it seems useful to highlight the destinction in the two logic branches.)

