Languages by Humans for Computers

Our last topic in this overview of compilation is language grammars. These are the rules used to
define programming languages, and we’ll see how they provide enough structure to permit efficient
and unambiguous translation from program source code to machine code.

We won’t have time to dive too deeply into grammars, parsing, and lexical analysis; but we’ll be
able to see and understand how the translation process from source to machine code is performed.

Ambiguity is Clearly a Bad Thing

Mathematics is an unambiguous language, given an expression:

T2+ 100+ y +2z(2 +ab)

It has only one value (for a collection of variable values)

Ambiguity is Clearly a Bad Thing

Mathematics is an unambiguous language, given an expression:

T2+ 100+ y +2z(2 +ab)

It has only one value (for a collection of variable values)

Programming languages may permit more than one way to express results or outcomes. . .

print ("Hello world") Python sys.stdout.write("Hello world\n")
SELECT name FROM students; SQL SELECT s.name FROM students AS s;
X =x+1; C/IC++ ++x;

There is still only one way to interpret the intent of the programmer.

Defining a Language

Here is a simple grammar that defines a § - AS[xBx$
language: A — sBrt|w
guage: B o gsl|sq

By Convention...
1. the special symbol $ means the end of input
2. UPPER case terms are non-terminals, they can appear on either side of the —

3. terms other than $ and non-terminals are called terminals, they can appear only on the
right-hand side of —

4. the vertical bar, |, is read as “OR”

Programs consist of only terminals.

Defining a Language

S — AS|
A simple grammar that defines a language: A — sBt
B — gqs|

Is the single token w permitted by this grammar?

Defining a Language

S - AS$|xBx$
A simple grammar that defines a language: A — sBt]|w
B — gqs|sgq

Is the single token w permitted by this grammar? Yes

olo

S - w$ <Parse Tree!

Defining a Language

S =
A simple grammar that defines a language: A —
B —

What about xsqgx ?

Defining a Language

S - AS$|xBx$
A simple grammar that defines a language: A — sBt|w
B — qs|sgq

What about xsqgx ?Yes

s OO
S - xsqgx$

Defining a Language

S - A$|xBx$
A simple grammar that defines a language: A — sBt|w
B — qs|sgq

Which of these are permitted?

ssqt
wWXxgqsXx

xXqsx

Defining a Language

S - AS$|xBx$
A simple grammar that defines a language: A — sBt|w
B — gqs|sgq

Which of these are permitted? ° °
A () (3) ()

Defining a Language

S - AS
A simple grammar that defines a language: A — sB
B — g¢gs

Which of these are permitted?

wxgqgsx ?

Defining a Language

S - AS$|xBx$
A simple grammar that defines a language: A — sBt|w
B — gqs|sgq

Which of these are permitted?

Syntax Error: did not expect x after w.
wxqgsx No

Which of these are permitted?

Xqsx

?

Defining a Language

Which of these are permitted?

xqgsx Yes

Defining a Language

a. The parse tree leaves are special, what do

Defining a Language

S - AS$|xBx$
(7
they hold? . A = sBt|w
. What grammar parts are in the non-leaf B - gqs|sgq
nodes?

Defining a Language

W

s qst S - A$|xBx$
ssqgt A — sBt|w

X g s x B — qgs|sq
X's q X

Clearly, there are a limited number of terminal sequences permitted by this grammar.

It is FINITE — we certainly don’t want programming languages with this property.

Recursive Language Definitions

S — QLIST $
QLIST — Q QLIST
| A Here is a recursive grammar that permits an infinite
Q — abc collection of terminal sequences.
| k&
| stu

One Last Convention...
5. the special symbol A means an empty sequence of tokens — AKA “nothing”

Recursive Language Definitions

%]

OLIST

©Q

— 41 —1 1

QLIST $
O QLIST
A

abc

k

Stu

Here is a recursive grammar that permits an infinite
collection of terminal sequences.

What happens with multiple Qs?
kabck

Recursive Language Definitions

Program

kabck

parsed by language

QLIST $
Q QLIST
A

abc

k

stu

QLIS

Q Nty
— 1l —1

h ta ta t”r ”1 U1 ”1 O
Ll i dd

Derivation

QLIST $

O OLIST $

k QLIST $

k Q QLIST $
kabc QLIST $
kabcQ QLIST $
kabckQLIST $
kabckA$

Recursive Language Definitions

Program

kabck

parsed by language

S — QLIST $
QLIST — Q QLIST
A

|
0o - bc
|

Parse Tree

A Simple Programming Language

PROGRAM
SLIST

S

EXPR

— =1

SLIST $

S SLIST

A

var = EXPR

if EXPR then (SLIST)

if EXPR then (SLIST) else (SLIST)
while EXPR do (SLIST)
repeat (SLIST) while EXPR
repeat (SLIST) until EXPR
expr

var

A Simple Programming Language

PROGRAM
SLIST

S

EXPR

— =1

SLIST $

S SLIST

A

var = EXPR

if EXPR then (SLIST)

if EXPR then (SLIST) else (SLIST)
while EXPR do (SLIST)

repeat (SLIST) while EXPR

repeat (SLIST) until EXPR

expr

var

Which grammar rule means this is not a finite language?

II.

III.

Iv.

V.
VL

VIL

Program Example A - Compilation Steps

Lexical analysis detects keywords, variable names,
expressions, and special symbols such as parenthesis
and equal.

The sequence of tokens is parsed using the grammar
rules into a parse tree.

The parse tree is simplified into a sequence of
assignments with comparisons and branches

(jumps).
Assign memory locations for variables
Assign registers and instructions for expressions

Generate comparision and jump instructions for
control structures

...and then we can generate machine instructions!

3
C (27)
b a*10+1
repeat (
b b-a/2+1
a = atl
) until b<O0

a

a =3
c = (27)
b a*10+1
repeat (
b = b-a/2+1
a = atl
) until b<0

for
Grammar
Analysis

. {var,a} = {expr, 3}

Lex1cal. {var,c} = {expr, (27)}

Analysis {var,b} = {expr,a*10+1}

Describes repeat (

Tokens {var,b} = {expr,b-a/2+1}
{var,a} = {expr,atl}

PROGRAM
SLIST

S

EXPR

— =1

) until {expr,b<0}

SLIST $

S SLIST

A

var = EXPR

if EXPR then (SLIST)

if EXPR then (SLIST) else (SLIST)
while EXPR do (SLIST)
repeat (SLIST) while EXPR
repeat (SLIST) until EXPR
expr

var

... that generates —

...a Parse Tree

PROGRAM
CERICEIOICEIOICDICENO

Simplify Statement S Nodes

PROGRAM

De-curse SLIST

PROGRAM
e e e repeat-until

Programs are just an SLIST that HALTSs

e e e repeat-until @

Generate RHS Expression Trees

e e e repeat-until @

Assign Memory Locations for Variables

e e e repeat-until @

Variable Memory Address ‘ ° ° °

a @FF

¢ @FE °°

b @FD
OO,

Assign Registers and Instructions for Expressions

CsusT)
STORE R @FF > C_STORE R4 @FE_> C_STORE R @D _repeatanil > (AL
CsusT)

Generate Instructions for Control Structures
®\
Gy
CousTS

LOAD R4 0x03
STORE R4 QFF
LOAD R4 0x1B
STORE R4 QFE
LOAD R4 QFF
LOAD R5 0x0A
R4 <- R4 * RS
LOAD R5 0x01
R4 <- R4 + RS
STORE R4 @FD
LABEL A

LOAD R4 QFD
LOAD R5 QFF
LOAD R6 0x02
R5 <- R5 / R6

R4 <- R4 - RS
LOAD R5 0x01
R4 <- R4 + R5
STORE R4 @FD
LOAD R4 @QFF
LOAD R5 0x01
R4 <- R4 + RS
STORE R4 @FF
LOAD R3 @FD
LOAD R4 0x00
R3 <- R3 < R4
LOAD RO 0x00

GOTO A if R3 = RO

HALT

(Pseudo) Assembly Code

An assembler will take these
instructions and generate the
actual machine code,

resolving LABELSs and GOTOs,
and perhaps performing some
low-level optimizations such as
removing redundant LOADs and
STOREsS.

Source

Program Scanner

Tokens

>

4 A

Symbol Tables

AST
Parser : Type Checker
v Decorated
AST
vl Translator

Interemediate i

Representation

Optimizer

Interemediate [
Representation

| N

Code Generator

\ J
Target Code

Figure 1.4: A syntax-directed compiler. AST denotes the Abstract

Syntax Tree.

Compilers

We’ve looked at the essential steps taken to generate machine code from a high-level programming
language.

Whether you use an interpretted language within a “virtual machine” such as Python, Ruby, Lisp,
Java, ...or a language compiled “down to machine code” such as C, C++, or Fortran — you use a
compiler of some sort, and that compiler pretty much follows all of these steps in order to
(eventually) execute your instructions on a CPU.

The design of computer languages and the parsing algorithms associated with them is one of the
classic and fundamental topics in Computer Science.

Program Example B - Compilation Steps

I. Lexical analysis detects keywords, variable names,
expressions, and special symbols such as parenthesis

and equal.
II. The sequence of tokens is parsed using the grammar
rules into a parse tree. x = (a+b) /23
III. The parse tree is simplified into a sequence of If x<3 then |
assignments with comparisons and branches s =1
(jumps).) else (
IV. Assign memory locations for variables t=2
V. Assign registers and instructions for expressions)

VI. Generate comparision and jump instructions for
control structures

VIIL. ...and then we can generate machine instructions!

x = (atb)/23 Lexical {var,x} = {expr, (atb)/23}

if x<3 then (Analysis if {expr,x<3} then (
s =1 Describes {var,s} = {expr,1}
) else (Tokens) else (
t =2 % {var,t} = {expr,2}
))
PROGRAM SLIST $
SLIST S SLIST
for A
Grammar if EXPR then (SLIST)
Analysis if EXPR then (SLIST) else (SLIST)

-
—)

|

S — wvar = EXPR

|

|

| while EXPR do (SLIST)
| repeat (SLIST) while EXPR
| repeat (SLIST) until EXPR
- expr

| var

... that generates —

...a Parse Tree

Simplify Statement S Nodes

PROGRAM

De-curse SLIST

PROGRAM

Programs are just an SL/IST that HALT's

Generate RHS Expression Trees

Assign Memory Locations for Variables

Variable Memory Address

x @FF

@FE

@FD

@FC

—=|ln|T|

@FB

Assign Registers and Instructions for Expressions

€Y
<D
(i)
Gusy - CausD

Generate Instructions for Control Structures

Cousty
Gty
Crarams > C1oapRs o7 O (i)
Coerox™> Clasers > Cousr s
€D

(Pseudo) Assembly Code

LOAD R4 QFE LOAD R4 0x02
LOAD R5 @QFD STORE R4 @FB
R4 <- R4 + RS LABEL A

LOAD R5 0x17 HALT

R4 <- R4 / RS
STORE R4 @FF
LOAD R3 QFF
LOAD R4 0x03
R3 <- R3 < R4
LOAD RO 0x00
GOTO B if R3 = RO
LOAD R4 0x01
STORE R4 QFC
JUMP TO A
LABEL B

An assembler will take these
instructions and generate the
actual machine code,

resolving LABELSs and GOTOSs,
and perhaps performing some
low-level optimizations such as
removing redundant LOADs and
STORES.

