Finite Automata (sing. Automaton, abbrev FA)

» FAs have a finite number of states.
» FAs have a finite alphabet (X).

» Transitions between states are labeled with the

characters from X or a character setI1 € X, ora
regular expression.

A period (.) is an alternative notation for X in
FA diagrams (and a is used in many (all?) RE
engine languages).

FAs have a single start state, its incident edge
is unlabeled. The first character of input is
consumed by an emanating edge of this state.

FAs have a subset of states called accepting
states (technically, this can be 0 but we will only
consider FAs with at least one accepting state).

is a state
—2 _» isatransitiononaeX
—> is the start state

18 an accepting state

/ / Eol
— 11— 22— 3 —p 4
4

Not(Eol)

Deterministic Finite Automata (DFA)

DFA = A finite automata with a unique transition
for any character at any state.

1. Any regular expression can be expressed as a DFA

2. Any DFA can be expressed as a regular expression

DFA = RE

Coding DFAs — Explicit Algorithm

/> Assume CurrentChar contains the first character to be scanned */
if CurrentChar ="/
then
CurrentChar < READ()
if CurrentChar ="’/
then
repeat
CurrentChar < READ()
until CurrentChar € { Eol, Eof}
else /x Signal a lexical error x/
else /x Signal a lexical error x/
if CurrentChar = Eol
then /% Finished recognizing a comment x/
else /% Signal a lexical error x/

Figure 3.4: Explicit control scanner.

Coding DFAs — Table Driven Algorithm

_."l
(@) " |
NE)IT(E”OD
State Character
/S |Eol]lal|b
112
(b) 2|3
313 4 |3]3] 3
4

Figure 3.2: DFA for recognizing a single-line comment. (a) transition
diagram; (b) corresponding transition table.

Coding DFAs — Table Driven Algorithm

/* Assume CurrentChar contains the first character to be scanned %,
State < StartState
while true do

NextState < T[State, CurrentChar]

if NextState = error

then break

State < NextState

CurrentChar < ReEAD()
if State € AcceptingStates
then /% Return or process the valid token x/
else /% Signal a lexical error x/

Figure 3.3: Scanner driver interpreting a transition table.

	Finite Automata and DFAs

