
Compilers Learning Group Assignment #23 Syntax Directed Translation

Distribute the following questions across the members of your group. You will share your solutions (and most impor-

tantly the method of your solutions) during the next lecture period. Divide up the questions so you have more than one

person working on each of 1 and 2, while a couple people could collaborate on the LR parser (??).

All students should review the learning goals on the schedule page for Syntax Directed Translation, §7.1–§7.2.

1. Read §7.1–7.3 from the text and explain, clarify or answer the schedule page’s learning goals for syntax directed

translation.

2. Read §7.4–7.5 from the text and explain, clarify or answer the schedule page’s learning goals concerning abstract

syntax trees (ASTs)

3. Consider the binary operator language for infix arithmetic expressions:

Rules

1 S → SUM $

2 SUM → PRODUCT

3 SUM → SUM ADD PRODUCT

4 PRODUCT → POWER

5 PRODUCT → PRODUCT MULT POWER

6 POWER → VALUE

7 POWER → VALUE EXP POWER

8 VALUE → num

9 VALUE → var

10 VALUE → (SUM)
11 ADD → +
12 ADD → −

13 MULT → ∗

14 MULT → /
15 MULT → %

16 EXP → ∗∗

.

For the input shown with the trees, this would produce concrete parse trees with many nodes (tree on the following

page); whereas what we want is a conventional arithmetic expression tree (tree on the next page, also see the first

slide of show auntsally.pdf).

Design a scheme (in pseudo code) of SDT that converts the parsed concrete syntax tree into an arithmetic expres-

sion tree. Your scheme needs only two semantic actions specific to particular production rules and two “utility”

semantic actions (along with the proper assignment of each remaining grammar production rule to one of them).

https://cs.mcprogramming.com/static/comp/hr/0eeb939f7c1f1b12/show_auntsally.pdf

Compilers Learning Group Assignment #23 Syntax Directed Translation

Concrete Syntax Tree

S

SUM $

SUM ADD PRODUCT

PRODUCT

POWER

VALUE EXP POWER

a ** VALUE

(SUM)

SUM ADD PRODUCT

PRODUCT

POWER

VALUE

b

- POWER

VALUE

c

+ POWER

VALUE

3

Conventional Expression Tree

+

** 3

a -

b c

Input: a ** (b - c) + 3

Page 2

_parse-precexpr-c_src.tok/parsetree.eps
_parse-precexpr-e_src.tok/parsetree.eps

Compilers Learning Group Assignment #23 Syntax Directed Translation

4. Consider the binary operator language for prefix arithmetic expressions:

Rules

1 S → Pre f ixExpr $

2 Pre f ixExpr → (Op Args)
3 Args → Arg Arg MoreArgs

4 MoreArgs → Arg MoreArgs

5 MoreArgs → λ

6 Arg → num

7 Arg → var

8 Arg → Pre f ixExpr

9 Op → Le f tOp

10 Op → RightOp

11 Le f tOp → +
12 Le f tOp → ∗

13 RightOp → ∗∗

Conventional Expression Tree

**

+ **

+ 6

4 5

* x

* t

v q

Input: (** (+ 4 5 6) (* v q t) x)

For the input shown, this would produce concrete parse trees with many nodes (below) whereas what we want is

a conventional arithmetic expression tree (above).

Design a scheme (in pseudo code) of SDT that converts the parsed concrete syntax tree into an arithmetic expres-

sion tree. Take care that your solution makes addition and multiplication left associative and exponentiation (**)

right associative.

Also, explain to your group:

(a) Could the grammar have been designed differently to avoid the need for SDT? (Be careful not to change the

language!)

(b) How does this grammar “encode” our middle-school friend: “Please Excuse My Dear Aunt Sally?”, aka:

order of operations.

Concrete Syntax Tree

Page 3

_parse-prefexpr-e_src.tok/parsetree.eps

Compilers Learning Group Assignment #23 Syntax Directed Translation

S

Pre�xExpr $

(Op Args)

RightOp

**

Arg Arg MoreArgs

Pre�xExpr

(Op Args)

LeftOp

+

Arg Arg MoreArgs

4 5 Arg MoreArgs

6 λ

Pre�xExpr

(Op Args)

LeftOp

*

Arg Arg MoreArgs

v q Arg MoreArgs

t λ

Arg MoreArgs

x λ

Page 4

_parse-prefexpr-f_src.tok/parsetree.eps

