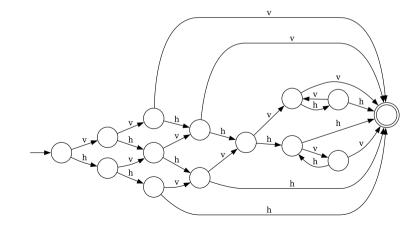
Regular Game of Volleyball?

In the past, the game of **volleyball** used these scoring rules (before "Rally Scoring"): Two teams volley the ball over a net until a team *loses the volley*. If the *serving team* loses the volley, the right to serve the ball into play is lost and goes to the other side. If **the serving team wins the volley**, they score a point.

Games are played to a score of N and must be won by a score differential of two or more (play continues past N in a sudden death fashion).

Would you consider volleyball a **regular game**? Which is to say can you draw a DFA representing **any game** with accepting states meaning "Game Over".

Suppose you have automated tools that can easily perform the RE \rightarrow NFA \rightarrow DFA conversions. How would you use (abuse?) them to make a state diagram (DFA diagram) for volleyball?


(Hint: consider first a small number of N, like N = 3)

Regular Game of Volleyball?

Let N = 3, h and v represent a Home Team score and a Visiting Team Score respectively. It is reasonably straightforward to generate all possible sequences of outright wins and games ending in "sudden death" where the *win by two* rule needs a Kleene operator before a team finally rises to the top. hhh VVV hhvh vvhv hvhh : . hhvvh(vh)*h hhvvh(vh)*vv vvhhv(hv)*v vvhhv(hv)*hh hvhvh(vh)*h ٠

Regular Game of Volleyball?

Alternating these together, (hhh|vvv|hhvh|vvhv|...), and using our supposed RE \rightarrow DFA tool chain ...

