Why Don't We Use NFAs during Scanning?

i. How can we represent an NFA in computer memory?

Why Don't We Use NFAs during Scanning?

i. How can we represent an NFA in computer memory?
An $n \times n$ Boolean matrix for $\lambda \mathrm{s}$, and a state $\times c \in \Sigma$ "transition table" whose cells contain what?

Why Don't We Use NFAs during Scanning?

i. How can we represent an NFA in computer memory?
An $n \times n$ Boolean matrix for $\lambda \mathrm{s}$, and a state $\times c \in \Sigma$ "transition table" whose cells contain what?
ii. While matching a character sequence to an NFA, what type of data structure must be used to remember where in the NFA we are?

Why Don't We Use NFAs during Scanning?

i. How can we represent an NFA in computer memory? An $n \times n$ Boolean matrix for $\lambda \mathrm{s}$, and a state $\times c \in \Sigma$ "transition table" whose cells contain what?
ii. While matching a character sequence to an NFA, what type of data structure must be used to remember where in the NFA we are?
iii. Can we represent a DFA more efficiently?
iv. What data structure is required to remember DFA matching state?

Why Don't We Use NFAs during Scanning?

An example of the simple /* C/C++ comment */ RE converted to an NFA using automated tools (in fact, all of which you will build in this course!)...

c++comment-automated.pdf

NFA to DFA Algorithm

 initialization$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>

```
procedure NFAtoDFA( N}\mathrm{ an NFA )
Let T[row][col] be an empty transition table defining
D. T[row][[] is uniquely identified by a set of
states from N, each T[|[col] uniquely identifies
a character c }\in\Sigma\mathrm{ .
let L be an empty stack
let A be the set of accepting states for N
let i be the starting state of N
```


NFA to DFA Algorithm

Transition Table T
FollowLambda

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>

```
procedure NFAtoDFA(N an NFA)
Let T[row][col] be an empty transition table defining
D. T[row][.] is uniquely identified by a set of
states from N, each T[.][col] uniquely identifies
a character c\in\Sigma.
    let }L\mathrm{ be an empty stack
    let }A\mathrm{ be the set of accepting states for N
    let i be the starting state of N
    B\leftarrowFollowLamda( {i} )
```


NFA to DFA Algorithm

Transition Table T
FollowLambda

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>

```
procedure FollowLambda( S a \subseteq of NFA N states )
returns the set of NFA states encountered by
recursively following only }\lambda\mathrm{ transitions
from states in S
Let }M\mathrm{ be an empty stack
foreach ( state t\inS) push t onto M
while ( }|M|>0) do 
    t\leftarrow pop }
    foreach ( \lambda transition from t to state q) do (
        if ( }q\not\inS)\mathrm{ then (
            add q to S
            push q onto M
        )
    )
)
return S
```


NFA to DFA Algorithm

 FollowLambda

 FollowLambda}

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$						

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack $L<\{0,4\}>$

$$
B=\{0,4\}
$$

```
procedure NFAtoDFA( N an NFA )
Let T[row][col] be an empty transition table defining
D. T[row][[] is uniquely identified by a set of
states from N, each T[|[col] uniquely identifies
a character c\in\Sigma.
    let L be an empty stack
    let A be the set of accepting states for N
    let i be the starting state of N
    B\leftarrowFollowLamda( {i} )
    initialize row T[B][·]
    mark T[B][\cdot] as the starting state of D
    if ( }A\capB\not=\emptyset) then 
        mark T[B][]] as an accepting state of D
    )
    push B onto L
```


NFA to DFA Algorithm discover new state sets

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$						

$i=0$
Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{a}$
repeat (
$S \leftarrow$ pop L
foreach ($c \in \Sigma$) do (
$R \leftarrow$ FollowLambda(FollowChar (S, c))
$T[S][c] \leftarrow R$
if $(|R|>0$ AND $T[R][\cdot]$ does not exist) then initialize row $T[R][\cdot]$ if $(A \bigcap R \neq 0)$ then (mark $T[R][\cdot]$ as an accepting state of D) push R onto L)
)
while $(|L|>0)$

NFA to DFA Algorithm

FollowChar

$A=\{9,10\}$
$i=0$
Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{a}$
$\emptyset \leftarrow$ FollowChar (S, c)
procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$)
returns the set of NFA states obtained from following
all c transitions from states in S

```
Let }F\mathrm{ be an empty set
foreach ( state t\inS) do (
        foreach ( c transition from t to state q ) do (
        add }q\mathrm{ to }
        )
)
return F
```


NFA to DFA Algorithm

 FollowLambda

 FollowLambda}

Transition Table T

is Start	is Accept	State	a	b	c	d	\mathbf{e}	\mathbf{f}
Y	N	$\{0,4\}$						

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{a}$
$\emptyset \leftarrow$ FollowLambda (Ø)
procedure FollowLambda(S a of NFA N states)
returns the set of NFA states encountered by recursively following only $\boldsymbol{\lambda}$ transitions from states in S

```
Let }M\mathrm{ be an empty stack
foreach ( state t\inS) push t onto M
while ( }|M|>0) do 
    t\leftarrow pop M
    foreach ( \lambda transition from t to state q) do (
        if ( q\not\inS) then (
            add q to }
            push q onto M
        )
    )
)
return S
```


NFA to DFA Algorithm discover new state sets

is Start	is Accept	State	\mathbf{a}	b	c	\mathbf{d}	\mathbf{e}	\mathbf{f}
Y	N	$\{0,4\}$	\emptyset					

$$
A=\{9,10\}
$$

$$
i=0
$$

Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{a}$
$R=\emptyset$

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( A\bigcapR\not=\emptyset) then (
                mark T[R][\cdot] as an accepting state of D
            )
            push R onto L
        )
        )
        while ( }|||>0
```


NFA to DFA Algorithm discover new state sets

Transition Table T

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0					

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{b}$
$\{10\} \leftarrow$ FollowChar (S, c)
procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$) returns the set of NFA states obtained from following all c transitions from states in S

```
Let F be an empty set
foreach ( state t\inS) do (
    foreach ( }c\mathrm{ transition from t to state q ) do (
        add q}\mathrm{ to }
    )
)
return F
```


NFA to DFA Algorithm discover new state sets

Transition Table T

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0					

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

Stack L <empty>
$S=\{0,4\}$
$c=\mathrm{b}$

$$
\{10\} \leftarrow \text { FollowLambda }(\{10\})
$$

```
procedure FollowLambda( }S\mathrm{ a }\subseteq\mathrm{ of NFA }N\mathrm{ states)
returns the set of NFA states encountered by
recursively following only }\lambda\mathrm{ transitions
from states in S
Let }M\mathrm{ be an empty stack
foreach ( state t\inS) push t onto }
while ( }|M|>0) do 
    t\leftarrow pop }
    foreach ( }\lambda\mathrm{ transition from t to state q) do (
        if ( q\not\inS) then (
            add q}\mathrm{ to }
            push }q\mathrm{ onto }
        )
    )
)
return S
```


NFA to DFA Algorithm
discover new state sets
Transition Table T

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0	$\{10\}$				
N	Y	$\{10\}$						

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

$$
\text { Stack } L<\{10\}>
$$

$$
S=\{0,4\}
$$

$$
c=\mathrm{b}
$$

$$
R=\{10\}
$$

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma) do
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( }A\capR\not=\emptyset) the
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
        )
        while ( }|L|>0\mathrm{ )
```


NFA to DFA Algorithm discover new state sets

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0 \\
& \text { Stack } L<\{10\}> \\
& S=\{0,4\} \\
& c=\mathrm{c} \\
& \{1,4\} \leftarrow \text { FollowChar }(S, c)
\end{aligned}
$$

Transition Table T
procedure FollowChar (S a \subseteq of NFA N states, $c \in \Sigma$) returns the set of NFA states obtained from following all c transitions from states in S

```
Let F be an empty set
foreach ( state t\inS) do (
    foreach ( }c\mathrm{ transition from t to state q ) do (
        add q}\mathrm{ to }
        )
)
return F
```


NFA to DFA Algorithm discover new state sets

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0 \\
& \text { Stack } L<\{10\}> \\
& S=\{0,4\} \\
& c=\mathrm{c} \\
& \{1,4\} \leftarrow \text { FollowLambda }(\{1,4\}
\end{aligned}
$$

Transition Table T
procedure FollowLambda(S a \subseteq of NFA N states)
returns the set of NFA states encountered by
recursively following only $\boldsymbol{\lambda}$ transitions
from states in S

```
Let }M\mathrm{ be an empty stack
```

Let }M\mathrm{ be an empty stack
foreach (state t\inS) push t onto }
foreach (state t\inS) push t onto }
while (}|M|>0) do
while (}|M|>0) do
t\leftarrow pop }
t\leftarrow pop }
foreach (}\lambda\mathrm{ transition from t to state q) do (
foreach (}\lambda\mathrm{ transition from t to state q) do (
if (q\not\inS) then (
if (q\not\inS) then (
add q}\mathrm{ to }
add q}\mathrm{ to }
push q onto M
push q onto M
)
)
)
)
)
)
return S
return S

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0	$\{10\}$				
N	Y	$\{10\}$						

NFA to DFA Algorithm discover new state sets

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

$$
\text { Stack } L<\{1,4\},\{10\}>
$$

$$
S=\{0,4\}
$$

$$
c=\mathrm{c}
$$

$$
R=\{1,4\}
$$

repeat (

$$
S \leftarrow \text { pop } L
$$

$$
\text { foreach }(c \in \Sigma) \text { do }
$$

$$
R \leftarrow \text { FollowLambda(FollowChar }(S, c))
$$

$$
T[S][c] \leftarrow R
$$

$$
\text { if }(|R|>0 \text { and } T[R][\cdot] \text { does not exist }) \text { then }
$$

$$
\text { initialize row } T[R][\cdot]
$$

$$
\text { if }(A \cap R \neq 0) \text { then }
$$

$$
\operatorname{mark} T[R][\cdot] \text { as an accepting state of } D
$$

)
 push \(R\) onto \(L\)
)
)
 while \((|L|>0)\)

NFA to DFA Algorithm

discover new state sets

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0
\end{aligned}
$$

$$
\text { Stack } L<\{1,4\},\{10\}>
$$

$$
S=\{0,4\}
$$

$$
c=\mathrm{d}
$$

$$
\{5\} \leftarrow \operatorname{FollowChar}(S, c)
$$

$$
\text { procedure FollowChar (} S \text { a } \subseteq \text { of NFA } N \text { states, } c \in \Sigma \text {) }
$$

returns the set of NFA states obtained from following

$$
\text { all } c \text { transitions from states in } S
$$

```
Let F be an empty set
foreach ( state t\inS) do (
    foreach ( }c\mathrm{ transition from t to state q ) do (
        add q}\mathrm{ to }
        )
)
return F
```


NFA to DFA Algorithm discover new state sets

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0 \\
& \text { Stack } L<\{1,4\},\{10\}> \\
& S=\{0,4\} \\
& c=\mathrm{d} \\
& \{5,6,8\} \leftarrow \text { FollowLambda }(\{5\})
\end{aligned}
$$

Transition Table T

```
procedure FollowLambda( }S\mathrm{ a }\subseteq\mathrm{ of NFA N states )
returns the set of NFA states encountered by
recursively following only }\lambda\mathrm{ transitions
from states in S
Let }M\mathrm{ be an empty stack
foreach (state t\inS) push t onto }
while ( }|M|>0) do 
    t\leftarrow pop }
    foreach ( }\lambda\mathrm{ transition from t to state q) do (
        if ( q\not\inS) then (
            add q}\mathrm{ to }
            push q onto M
        )
    )
)
```


is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0	$\{10\}$	$\{1,4\}$			
N	Y	$\{10\}$						
N	N	$\{1,4\}$						

```
NFA to DFA Algorithm
    discover new state sets
Transition Table \(T\)
\begin{tabular}{ccccccccc} 
is Start & is Accept & State & a & b & c & d & e & \(\mathbf{f}\) \\
\hline \hline Y & N & \(\{0,4\}\) & 0 & \(\{10\}\) & \(\{1,4\}\) & \(\{5,6,8\}\) & \\
N & Y & \(\{10\}\) & & & & & \\
N & N & \(\{1,4\}\) & & & & & \\
N & N & \(\{5,6,8\}\) & & & & &
\end{tabular}
```

A={9,10}

```
A={9,10}
i=0
i=0
Stack L<{5,6,8},{1,4},{10}>
Stack L<{5,6,8},{1,4},{10}>
S={0,4}
S={0,4}
d=\textrm{d}
d=\textrm{d}
R={5,6,8}
R={5,6,8}
repeat (
        S\leftarrow pop L
        foreach ( c\in\Sigma) ) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist) then
            initialize row T[R][·]
            if ( }A\capR\not=0)\mathrm{ then (
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
        )
while ( }|L|>0
```


Transition Table T
NFA to DFA Algorithm characters e and fyield \emptyset

is Start	is Accept	State	a	b	c	d	e	f
Y	N	$\{0,4\}$	\emptyset	$\{10\}$	$\{1,4\}$	$\{5,6,8\}$	\emptyset	\emptyset
N	Y	$\{10\}$						
N	N	$\{1,4\}$						
N	N	$\{5,6,8\}$						

$$
S=\{0,4\}
$$

$$
c=\mathrm{f}
$$

$$
R=\emptyset
$$

repeat (
repeat (
S\leftarrow pop L
S\leftarrow pop L
foreach (c\in\Sigma) do
foreach (c\in\Sigma) do
R\leftarrow FollowLambda(FollowChar (S,c))
R\leftarrow FollowLambda(FollowChar (S,c))
T[S][c]\leftarrowR
T[S][c]\leftarrowR
if (|R|>0 AND T[R][\cdot] does not exist) then
if (|R|>0 AND T[R][\cdot] does not exist) then
initialize row T[R][·]
initialize row T[R][·]
if (A\bigcapR\not=0) then
if (A\bigcapR\not=0) then
mark T[R][·] as an accepting state of D
mark T[R][·] as an accepting state of D
)
)
push R onto L
push R onto L
)
)
)
)
while (}|L|>0
while (}|L|>0

NFA to DFA Algorithm pop L and do it all again	Transition Table T								
	Y	N	\{0,4\}	0	\{10\}	\{1,4\}	\{5,6,8\}	\emptyset	0
$A=\{9,10\}$	N	Y	\{10\}						
$i=0$	N	N	\{1,4\}						
Stack $L<\{9\},\{1,4\},\{10\}>$	N	N	\{5,6,8\}	0	\{9\}	0	\emptyset	0	\{9\}
$S=\{5,6,8\}$	N	Y	\{9\}						

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( }A\capR\not=\emptyset) the
                mark T[R][\cdot] as an accepting state of D
            )
            push R onto L
        )
    )
    while ( }|L|>0
```


NFA to DFA Algorithm pop L and do it all again	Transition Table T								
	is Start	is Accept	State	a	b	c	d	e	f
	Y	N	\{0,4\}	0	\{10\}	\{1,4\}	\{5,6,8\}	0	0
$A=\{9,10\}$	N	Y	\{10\}						
$i=0$	N	N	$\{1,4\}$						
Stack $L<\{8\},\{1,4\},\{10\}>$	N	N	\{5,6,8\}	0	\{9\}	0	0	0	\{9\}
$S=\{9\}$	N	Y	\{9\}	0	0	0	\{9\}	\{8\}	0
	N	N	\{8\}						

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( A\bigcapR\not=0) then
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
    )
    while ( |L|>0)
```


Transition Table T

pop L and do it all again

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0 \\
& \text { Stack } L<\{1,4\},\{10\}> \\
& S=\{8\}
\end{aligned}
$$

is Start	is Accept	State	a	b	c	d	e	f
Y	N	$\{0,4\}$	0	$\{10\}$	$\{1,4\}$	$\{5,6,8\}$	0	0
N	Y	$\{10\}$						
N	N	$\{1,4\}$						
N	N	$\{5,6,8\}$	0	$\{9\}$	0	0	0	$\{9\}$
N	Y	$\{9\}$	0	0	0	$\{9\}$	$\{8\}$	0
N	N	$\{8\}$	0	$\{9\}$	0	0	0	0

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( A\bigcapR\not=0) then
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
    )
    while ( }|L|>0
```


Transition Table T pop L and do it all again

is Start	is Accept	State	a	b	c	d	e	\mathbf{f}
Y	N	$\{0,4\}$	0	$\{10\}$	$\{1,4\}$	$\{5,6,8\}$	0	0
N	Y	$\{10\}$						
N	N	$\{1,4\}$	0	0	$\{4\}$			
N	N	$\{5,6,8\}$	0	$\{9\}$	0	0	0	$\{9\}$
N	Y	$\{9\}$	0	0	0	$\{9\}$	$\{8\}$	0
N	N	$\{8\}$	0	$\{9\}$	0	0	0	0
N	N	$\{4\}$						

```
A={9,10}
i=0
Stack L<{2,6}, {4}, {10}>
S={1,4}
c=c
R={4}
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma ) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][·] does not exist ) then
            initialize row T[R][·]
            if ( A\bigcapR\not=\emptyset) then (
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
        )
while ( }|L|>0
```


Transition Table T

pop L and do it all again

$$
\begin{aligned}
& A=\{9,10\} \\
& i=0 \\
& \text { Stack } L<\{2,6\},\{4\},\{10\}> \\
& S=\{1,4\} \\
& c=\mathrm{d} \\
& R=\{5,6,8\}
\end{aligned}
$$

is Start	is Accept	State	a	b	c	d	e	f
Y	N	$\{0,4\}$	\emptyset	$\{10\}$	$\{1,4\}$	$\{5,6,8\}$	0	0
N	Y	$\{10\}$						
N	N	$\{1,4\}$	\emptyset	0	$\{4\}$	$\{5,6,8\}$		
N	N	$\{5,6,8\}$	0	$\{9\}$	0	0	0	$\{9\}$
N	Y	$\{9\}$	0	0	0	$\{9\}$	$\{8\}$	0
N	N	$\{8\}$	0	$\{9\}$	0	0	0	0
N	N	$\{4\}$						

```
repeat (
    S\leftarrow pop L
    foreach ( c\in\Sigma ) do (
        R\leftarrow FollowLambda(FollowChar (S,c))
        T[S][c]\leftarrowR
        if ( |R|>0 AND T[R][\cdot] does not exist ) then
            initialize row T[R][·]
            if ( }A\capR\not=0) then 
                mark T[R][·] as an accepting state of D
            )
            push R onto L
        )
        )
        while ( }|L|>0
```


Transition Table T
pop L and do it all again

is Start	is Accept	State	a	b	c	d	e	f
Y	N	$\{0,4\}$	\emptyset	$\{10\}$	$\{1,4\}$	$\{5,6,8\}$	\emptyset	\emptyset
N	Y	$\{10\}$						
N	N	$\{1,4\}$	\emptyset	\emptyset	$\{4\}$	$\{5,6,8\}$	$\{2,6\}$	
N	N	$\{5,6,8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$
N	Y	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$	$\{8\}$	\emptyset
N	N	$\{8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	\emptyset
N	N	$\{4\}$						
N	N	$\{2,6\}$						

repeat (

$S \leftarrow$ pop L
foreach ($c \in \Sigma$) do (
$R \leftarrow$ FollowLambda(FollowChar (S, c))
$T[S][c] \leftarrow R$
if ($|R|>0$ AND $T[R][\cdot]$ does not exist) then initialize row $T[R][\cdot]$ if $(A \cap R \neq \emptyset)$ then (mark $T[R][\cdot]$ as an accepting state of D
)
push R onto L
)
)
while $(|L|>0)$

NFA to DFA Algorithm
Transition Table T

$A=\{9,10\}$	N	Y	$\{10\}$	$\{0,4\}$	\emptyset	\emptyset	\emptyset	$\{1\}$	\emptyset
$i=0$	N	N	$\{1,4\}$	\emptyset	\emptyset	$\{4\}$	$\{5,6,8\}$	$\{2,6\}$	\emptyset
Stack L <empty>	N	N	$\{5,6,8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$
	N	Y	$\{9\}$	\emptyset	\emptyset	\emptyset	$\{9\}$	$\{8\}$	\emptyset
	N	N	$\{8\}$	\emptyset	$\{9\}$	\emptyset	\emptyset	\emptyset	\emptyset
	N	N	$\{4\}$	\emptyset	\emptyset	$\{4\}$	$\{5,6,8\}$	\emptyset	\emptyset
	N	N	$\{2,6\}$	$\{10\}$	$\{3,10\}$	\emptyset	\emptyset	\emptyset	$\{9\}$
	N	Y	$\{3,10\}$	$\{0,4\}$	\emptyset	$\{7\}$	\emptyset	$\{1\}$	\emptyset
	N	N	$\{7\}$	$\{9\}$	\emptyset	\emptyset	$\{8\}$	\emptyset	\emptyset
	N	N	$\{1\}$	\emptyset	\emptyset	\emptyset	\emptyset	$\{2,6\}$	\emptyset

When L is empty, the table T holds a DFA derived from the original NFA.

