
Storing CFGs and hasLambdaRule(X)

You’ve now worked through several exercises centered around context free grammars.

We are embarking on the topic grammar analysis, so now is a good time to consider CFGs

from an implementation perspective.

Discuss within your learning groups: what type of data structure(s) or object(s) would

you use to store a CFG in computer memory?

How would you represent that A has a rewrite rule of A → λ? Is this implicit in the data of

the structure, or would you use a member (helper) function?

CFGs in Memory & hasLambdaRule(X)

◮ Not all grammars use S as the goal or starting symbol, so you’ll definitely want some

data member .goal or .startsymbol.

◮ A CFG is mostly a collection of rewrite or production rules, and non-terminals can

have more than one RHS. So an associative array of lists or a “multiset” seems most

applicable (.rules?).

◮ You could maintain a separate set of all non-terminals that have λ as a RHS,

◮ or, since RHS are independent of each other, with no required or implicit

ordering you could keep the RHS lists (“values” of .rules) sorted by ascending

length, and have a simple query function:

procedure hasLambdaRule(theCFG , X) ≡ |theCFG.rules [X][0]|= 0

While there are plenty wrong ways to represent a CFG, there is certainly more than one

“right way,” something you should be thinking about . . .

