First Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

Write a sentence from the language of this grammar. . .

First Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

Write a sentence from the language of this grammar. . .
What terminals of the grammar $(\Sigma=\{b, c, e, g, h\})$ can a sentential form β begin with? ${ }^{1}$

How is this different than the previous question? We just want the first terminal, and we are interested in all possible sentences of the language.

[^0]
First Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

Write a sentence from the language of this grammar. . .
What terminals of the grammar $(\Sigma=\{b, c, e, g, h\})$ can a sentential form β begin with? ${ }^{1}$

How is this different than the previous question? We just want the first terminal, and we are interested in all possible sentences of the language.

Congratulations (I hope), you've just found (most of) the First Set of S :

$$
\operatorname{First}(S) \approx\{b, c, e, g, h\}
$$

What is the First Set of E ?
${ }^{1}$ Recall a sentential form is $S \Rightarrow{ }^{*} \beta$ and $\beta \in(N \cup \Sigma)^{*}$

First Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

Write a sentence from the language of this grammar. . .
What terminals of the grammar $(\Sigma=\{b, c, e, g, h\})$ can a sentential form β begin with? ${ }^{1}$

How is this different than the previous question? We just want the first terminal, and we are interested in all possible sentences of the language.

Congratulations (I hope), you've just found (most of) the First Set of S :

$$
\operatorname{First}(S) \approx\{b, c, e, g, h\}
$$

What is the First Set of E ? $\operatorname{First}(E)=\{e\}$
${ }^{1}$ Recall a sentential form is $S \Rightarrow{ }^{*} \beta$ and $\beta \in(N \cup \Sigma)^{*}$

First Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

$\operatorname{First}(E)=\{e\}$
Why isn't c in $\operatorname{First}(E)$? Notice that $E \rightarrow \lambda$ and rules 2, 7,9 and 6 permit
(2) $S \rightarrow E F G H \$$
(7) $S \rightarrow \lambda F G H \$$
(9) $S \rightarrow$ CEGH\$
(6\&7) $S \rightarrow c \lambda G H \$$
$S \rightarrow c G H \$$
so can't c begin an E ?
It's time for a formal definition of $\operatorname{First}(\alpha) \ldots$

First Sets of α (Formal Definition)

\#	Rules	
1	$S \rightarrow B C$ \$	
2	$S \rightarrow E F G H \$$	First (α) $=\left\{t \in \Sigma_{\$} \mid \alpha *^{*} t \beta\right\} \quad \alpha \in N, \quad \beta \in(N \bigcup \Sigma)^{*}$
3	$S \rightarrow H$ \$	
4	$B \rightarrow b$	
5	$C \rightarrow \lambda$	Notice: we aren't interested in sentential forms, ie: all the rules
6	$C \rightarrow c$	containing α in the RHS. First (α) is just the terminals that can begin
7	$E \rightarrow \lambda$	the RHS of a derivation with α on the LHS.
8	$E \rightarrow e$	(We also permit ourselves to say $t \Rightarrow t$, even though t is a terminal (or even
9	$F \rightarrow C E$	$\$$) and does not exist on the LHS of any production rule; what is easy about
10	$G \rightarrow g$	$\alpha \in \Sigma_{\$}$?
11	$H \rightarrow \lambda$	
12	$H \rightarrow h$	

First Sets of α (Computational Definition)

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

$$
\begin{gathered}
\operatorname{First}(\alpha)=\left\{\begin{array}{cl}
\left\{^{\{\alpha\}}\right. & \text { if } \alpha \in \Sigma_{\$} \\
\bigcup_{\left(\alpha \rightarrow X_{i} \beta_{i}\right) \in P}^{\operatorname{First}\left(X_{i} \beta_{i}\right)} & \text { if } \alpha \in N
\end{array}\right. \\
\operatorname{First}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)=\bigcup_{j=1}^{n} \operatorname{First}\left(\alpha_{j}\right) \text { if } \alpha_{i} \Rightarrow^{*} \lambda \text { for } i=1, \ldots, j-1
\end{gathered}
$$

The first set of a terminal is itself, the first set of a non-terminal is the union of the first sets of its production rules' LHSs, and the first set of a sequence is the union of its element's first sets from left to right up to and including the first symbol that cannot derive to λ.

Notice that first sets are from $\Sigma_{\$}$, the complete First (S) is actually $\{b, c, e, g, h, \$\}$, because

Follow Sets of Non-Terminals N

$\#$	Rules	
1	$S \rightarrow B C \$$	
2	$S \rightarrow E F G H \$$	What symbols from $\Sigma_{\$}$ might follow the rewrite of $B \rightarrow b$
3	$S \rightarrow H \$$	
4	$B \rightarrow b$	
5	$C \rightarrow \lambda$	
6	$C \rightarrow c$	
7	$E \rightarrow \lambda$	
8	$E \rightarrow e$	
9	$F \rightarrow C E$	
10	$G \rightarrow g$	
11	$H \rightarrow \lambda$	
12	$H \rightarrow h$	

Follow Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

What symbols from $\Sigma_{\$}$ might follow the rewrite of $B \rightarrow b$ in a derivation using rule 4 ?
B is in the RHS of only rule 1 (which makes things simpler), in this case the "follow set" of $B \equiv \operatorname{First}(C \$)$ because $C \$$ comes after B in rule 1.

$$
\operatorname{Follow}(B)=\operatorname{First}(C \$)=\{c, \$\}
$$

Follow Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow C$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

Follow Sets of Non-Terminals N

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

A little more nuanced: what is the follow set of E ?
E is in the RHS of rules 2 and 9 ,

- from rule 2, Follow (E) gets a contribution from First $(F G H \$)=\{c, e, g\}$
- from rule 9, $\operatorname{Follow}(E)$ gets a contribution from $\operatorname{Follow}(F)$, since E is at the end of the rewrite rule for F.
Fortuitously, the Follow (F) is straightforward in this case:
Follow $(F)=\operatorname{First}(G H \$)=\{g\}$

$$
\operatorname{Follow}(E)=\operatorname{First}(F G H \$) \bigcup \operatorname{Follow}(F)=\{c, e, g\}
$$

Follow Sets of A (Definition)

$\#$	Rules
1	$S \rightarrow B C \$$
2	$S \rightarrow E F G H \$$
3	$S \rightarrow H \$$
4	$B \rightarrow b$
5	$C \rightarrow \lambda$
6	$C \rightarrow c$
7	$E \rightarrow \lambda$
8	$E \rightarrow e$
9	$F \rightarrow C E$
10	$G \rightarrow g$
11	$H \rightarrow \lambda$
12	$H \rightarrow h$

$$
\text { Follow }(A)=\left\{t \in \Sigma_{\$} \mid S \Rightarrow^{+} \alpha A t \underset{A \in N \quad \alpha, \beta \in(N \cup \Sigma)^{*}}{ }\right.
$$

In this case, we are interested in only sentential forms of the language.

There is no difference between calculating Follow $(t \in \Sigma)$ vs Follow $(A \in N)$, it turns out we will be interested in only the follow sets of non-terminals from the grammar.

Follow Sets of A (Computational Definition)

$\#$	Rules	
1	$S \rightarrow B C \$$	
2	$S \rightarrow E F G H \$$	
3	$S \rightarrow H \$$	Follow $(A)=\left\{t \in \Sigma_{\$} \mid S \Rightarrow^{+} \alpha A t \beta\right\}$
4	$B \rightarrow b$	
5	$C \rightarrow \lambda$	
6	$C \rightarrow c$	
7	$E \rightarrow \lambda$	i. Set $\operatorname{Follow}(A)=\emptyset$
8	$E \rightarrow e$	ii. For each instance of A in a production $X \rightarrow \alpha A \beta$,
9	$F \rightarrow C E$	a. Add $\operatorname{First}(\beta)$ to $\operatorname{Follow}(A)$
10	$G \rightarrow g$	b. If $\beta \Rightarrow \lambda$, add $\operatorname{Follow}(X)$ to $\operatorname{Follow}(A)$
11	$H \rightarrow \lambda$	
12	$H \rightarrow h$	

[^0]: ${ }^{1}$ Recall a sentential form is $S \Rightarrow{ }^{*} \beta$ and $\beta \in(N \cup \Sigma)^{*}$

