
Compiling a Regular Expression

RE → ALT $

ALT → SEQ ALT LIST

ALTLIST → pipe SEQ ALTLIST

| λ

SEQ → ATOM SEQLIST

| λ

SEQLIST → ATOM SEQLIST

| λ

ATOM → NUCLEUS ATOMMOD

ATOMMOD → kleene

| plus

| λ

NUCLEUS → open ALT close

| char CHARRNG

| dot

CHARRNG → dash char

| λ

To the left is an LL(1) compatible grammar for

simple regular expressions, sufficient for

lexing (scanning) simple program source.

Notice the order of operations within the

grammar:

◮ The lowest precedence operator is

ALTternation; it is also wrapped by

parenthesis

NUCLEUS → open ALT close

which makes the form highest precedence.

◮ ALT s are made up of one or more

SEQuences, separated by the pipe symbol,

◮ and SEQ s are a list of ATOMs

Compiling a Regular Expression

RE → ALT $

ALT → SEQ ALT LIST

ALTLIST → pipe SEQ ALTLIST

| λ

SEQ → ATOM SEQLIST

| λ

SEQLIST → ATOM SEQLIST

| λ

ATOM → NUCLEUS ATOMMOD

ATOMMOD → kleene

| plus

| λ

NUCLEUS → open ALT close

| char CHARRNG

| dot

CHARRNG → dash char

| λ

To the left is an LL(1) compatible grammar for

simple regular expressions, sufficient for

lexing (scanning) simple program source.

Notice the order of operations within the

grammar:

◮ An ATOM is made up of its NUCLEUS

and possibly an operator: kleene (* , any

number of) or plus (one or more).

◮ A NUCLEUS may be either a

parenthetical group ((a|bc)*), a

character range (just t or Q-V), or the

any-character dot (.)

The Concrete (“Raw”) Parse Tree

The raw (concrete) parse tree result

shows there are no syntax errors in

the source regular expression. But

compared to its simplified abstract

syntax tree it has several downsides:

1. Large (as in a much larger data

structure),

2. Most of the internal nodes are

not needed to represent the

semantic meaning of the

original regex,

3. Did we mention big?

Input RE: A-D.g+

RE

ALT $

SEQ ALTLIST

ATOM SEQLIST

NUCLEUS ATOMMOD

A CHARRNG

dash D

�

ATOM SEQLIST

NUCLEUS ATOMMOD

dot �

ATOM SEQLIST

NUCLEUS ATOMMOD

g CHARRNG

�

plus

�

�

An Abstract Syntax Tree (AST)

We would like an efficient process for

translating raw parse trees to ASTs,

ideally we could do this during the

parse.

The simplified AST is < 25% the

size of the original version, and this is

for a very small input.

Input RE: A-D.g+

SEQ

range dot plus

A D g

Operation: begin

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 1 RE → ALT $

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 2 ALT → SEQ ALT LIST

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 5 SEQ → ATOM SEQLIST

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 9 ATOM → NUCLEUS ATOMMOD

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 14 NUCLEUS → char CHARRNG

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token char match (char)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: dash predicts rule 16 CHARRNG → dash char

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token dash match (dash)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token char match (char)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of CHARRNG production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of NUCLEUS production — before rule 14 SDT procedure

STACK QUEUE PARSE TREE

if (node.CHARRNG.char exists) then (

let rangeNode← new range node

rangeNode.addChild(node.char)
rangeNode.addChild(node.CHARRNG.char)
replace node.children with rangeNode in parse tree T

return

)

Operation: end of NUCLEUS production — after rule 14 SDT procedure

STACK QUEUE PARSE TREE

if (node.CHARRNG.char exists) then (

let rangeNode← new range node

rangeNode.addChild(node.char)
rangeNode.addChild(node.CHARRNG.char)
replace node.children with rangeNode in parse tree T

return

)

Operation: end of NUCLEUS production — after rule 14 SDT procedure

STACK QUEUE PARSE TREE

Notice that our tree now contains node types not from the grammar (range),

That’s OK, it’s your tree, you can do with it as you please :)

Input RE: A-D.g+

Operation: end of NUCLEUS production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: dot predicts rule 12 ATOMMOD → λ

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: λ consumed from stack

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOMMOD production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOM production — before rule 9 SDT procedure

STACK QUEUE PARSE TREE

if (node.ATOMMOD.child is λ) then (

replace node with node.children[0].child in parse tree T

return

)

Operation: end of ATOM production — after rule 9 SDT procedure

STACK QUEUE PARSE TREE

if (node.ATOMMOD.child is λ) then (

replace node with node.children[0].child in parse tree T

return

)

Operation: end of ATOM production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: dot predicts rule 7 SEQLIST → ATOM SEQLIST

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: dot predicts rule 9 ATOM → NUCLEUS ATOMMOD

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: dot predicts rule 15 NUCLEUS → dot

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token dot match (dot)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of NUCLEUS production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 12 ATOMMOD → λ

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: λ consumed from stack

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOMMOD production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOM production — before rule 9 SDT procedure

STACK QUEUE PARSE TREE

if (node.ATOMMOD.child is λ) then (

replace node with node.children[0].child in parse tree T

return

)

Operation: end of ATOM production — after rule 9 SDT procedure

STACK QUEUE PARSE TREE

if (node.ATOMMOD.child is λ) then (

replace node with node.children[0].child in parse tree T

return

)

Operation: end of ATOM production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 7 SEQLIST → ATOM SEQLIST

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 9 ATOM → NUCLEUS ATOMMOD

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: char predicts rule 14 NUCLEUS → char CHARRNG

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token char match (char)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: plus predicts rule 17 CHARRNG → λ

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: λ consumed from stack

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of CHARRNG production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of NUCLEUS production — before rule 14 SDT procedure

STACK QUEUE PARSE TREE

if (node.CHARRNG.child is λ) then (

remove node.CHARRNG child

return

)

Operation: end of NUCLEUS production — after rule 14 SDT procedure

STACK QUEUE PARSE TREE

if (node.CHARRNG.child is λ) then (

remove node.CHARRNG child

return

)

Operation: end of NUCLEUS production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: plus predicts rule 11 ATOMMOD → plus

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token plus match (plus)

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOMMOD production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ATOM production — before rule 9 SDT procedure

STACK QUEUE PARSE TREE

ATOMMOD .child is either ’+’ or ’*’ (Kleene)

let newAtom ← new node.ATOMMOD.child node

newAtom .addChild (node.children[0].child)

replace node with newAtom in parse tree T

Operation: end of ATOM production — after rule 9 SDT procedure

STACK QUEUE PARSE TREE

ATOMMOD .child is either ’+’ or ’*’ (Kleene)

let newAtom ← new node.ATOMMOD.child node

newAtom .addChild (node.children[0].child)

replace node with newAtom in parse tree T

Operation: end of ATOM production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: $ predicts rule 8 SEQLIST → λ

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: λ consumed from stack

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

Whoa! There was an SDT procedure in there. . . What was its logic?

Input RE: A-D.g+

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

Whoa! There was an SDT procedure in there. . . What was its logic?

remove parent’s right most child

Input RE: A-D.g+

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

There is an implementation nuance here, are the SDT procedures expected to manage the notion

of the current node of the parsing engine? In this particular case, the procedure could make the

(new) right most node of node.parent the current node (plus); alternatively a current node stack

could be used instead of a singular notion of the current node.

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

Yet another approach to avoiding current node corruption is to permit SDT procedures to

manipulate only their own and their descendent’s structures. This “don’t talk back to your

parent” approach works particularly well for SDT procedures in LR parses. Avoid mixing and

matching your SDT philosophies within one grammar and implementation.

Operation: end of SEQLIST production — before rule 7 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQLIST (node, parse tree T)

let parent ← parent of node in T

if (node.child is λ) then (

trim last child of parent.children away

) else if (parent is SEQLIST) then (

let myChildren = node.children

trim last child of parent.children away

append parent.children with myChildren

)

Operation: end of SEQLIST production — after rule 7 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQLIST (node, parse tree T)

let parent ← parent of node in T

if (node.child is λ) then (

trim last child of parent.children away

) else if (parent is SEQLIST) then (

let myChildren = node.children

trim last child of parent.children away

append parent.children with myChildren

)

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of SEQLIST production — before rule 7 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQLIST (node, parse tree T)

let parent ← parent of node in T

if (node.child is λ) then (

trim last child of parent.children away

) else if (parent is SEQLIST) then (

let myChildren = node.children

trim last child of parent.children away

append parent.children with myChildren

)

Operation: end of SEQLIST production — after rule 7 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQLIST (node, parse tree T)

let parent ← parent of node in T

if (node.child is λ) then (

trim last child of parent.children away

) else if (parent is SEQLIST) then (

let myChildren = node.children

trim last child of parent.children away

append parent.children with myChildren

)

Operation: end of SEQLIST production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of SEQ production — before rule 5 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQ(node, parse tree T)

if (node.children.SEQLIST exists) then (

replace node.children.SEQLIST with node.children.SEQLIST ’s children

)

if (|node.children| = 1) then (

replace node with node.child in parse tree T

)

Operation: end of SEQ production — after rule 5 SDT procedure

STACK QUEUE PARSE TREE

procedure SEQ(node, parse tree T)

if (node.children.SEQLIST exists) then (

replace node.children.SEQLIST with node.children.SEQLIST ’s children

)

if (|node.children| = 1) then (

replace node with node.child in parse tree T

)

Operation: end of SEQ production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: $ predicts rule 4 ALT LIST → λ

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: λ consumed from stack

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: end of ALT LIST production — before rule 4 SDT procedure

STACK QUEUE PARSE TREE

What will the SDT procedure for ALT LIST → λ production do?

Input RE: A-D.g+

Operation: end of ALT LIST production — after rule 4 SDT procedure

STACK QUEUE PARSE TREE

Remove its parent’s right most child.

Here is another instance where the current node notion in the parsing algorithm can fail if not coded

carefully (because the current node was just lobbed off the tree).

Input RE: A-D.g+

Operation: end of ALT LIST production

STACK QUEUE PARSE TREE

What should ALT → SEQ ALTLIST production do with only one child?

Input RE: A-D.g+

Operation: end of ALT LIST production

STACK QUEUE PARSE TREE

What should ALT → SEQ ALTLIST production do with only one child?

Replace itself with its child.

Input RE: A-D.g+

Operation: end of ALT production

STACK QUEUE PARSE TREE

Input RE: A-D.g+

Operation: token $ match ($)

STACK QUEUE PARSE TREE

And what about the RE→ ALT $ production?

Input RE: A-D.g+

Operation: token $ match ($)

STACK QUEUE PARSE TREE

And what about the RE→ ALT $ production? Replace itself with its left most child.

Beware, the farther up the parse tree you progress,

the less likely that a node’s children will match a production rule’s RHS!

Input RE: A-D.g+

Operation: end of RE production

STACK QUEUE PARSE TREE

Voilà, a proper RE expression tree. Your LGA tonight will ask you to complete the

pseudo code for the other production rules in our RE grammar.

