
Compilers Learning Group Assignment #3 Deterministic Finite Automata

All students should read §3.3–3.6.

Distribute the following questions across the members of your group. You will share your solutions (and most impor-

tantly the method of your solutions) during the next lecture period. Divide up the questions so that each question has

at least two solutions from different group members.

For all of these questions, you do not need to venture farther than the regular expression language described in the

text for answers (namely: a, λ, a|b, a+, ak, and (of course) a∗). You don’t need “look backs”, named groups, or other

notions from any other regex language.

Questions for Review

For questions 1, 2, and 4, provide an algorithm that proves the assertion.

1. Page 110, question 181

Solution: Given e a regular expression, show that the strings not accepted by e, ē, is a regular set.

IDEA: If we can show that a DFA exists that accepts ē, then ē is a regular set.

Proof: Let D be the DFA with n states i = 1, . . . ,n equivalent to e (we know there is equivalency between

regular expressions and DFAs).

Suppose e = (abc|(a|d)b), Σ = {a,b,c,d}; the equivalent DFA would be
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Let Ci be all the characters in Σ without an emanating edge from state i in D. For e above:

i Ci

1 {b,c}
2 {a,c,d}
3 {a,c,d}
4 Σ

5 {a,b,d}

We use a proof by construction:

1. Let D be a copy of D

2. Mark all the stages in D that are non-accepting states.
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3. Make all states in D non-accepting states.
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1Too bad Not(e) doesn’t count as an algorithm.
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4. Add a single new accepting state n+ 1 to D.

5. Add a transition from each state i in D to the accepting state of D for the characters in Ci.
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6. Add a self-incident edge to the accepting state of D for Σ

7. Finally, make all the marked nodes accepting nodes. Note: if D does not accept λ, this will make D

accept λ (and vice-versa).
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The idea behind this construction is that we have “trapped” all the sentences (“words?”, character sequences)

that D will accept into non-accepting nodes (step 3) and provided an accepting path in D for any sentence D

would not match.

Lastly, toggling the “accepting” attribute of each state in the DFA doesn’t work. Consider the REs λ or

λ|a|ab, you’ll be left with a modified DFA without any accepting states!

2. Page 110, question 19; Hint: the world does not revolve around DFAs.

Solution: By definition a RE is a concatenation of (sub) REs which may themselves be a concatenation

(sequence), an alternation (|), or a Kleene closure (∗).

Alternation and Kleene closure are invariant with respect to “direction” or order; all we have to do is worry

about the RE sequences.

Given RE e:

1. rewrite any high level operators (a+, ak) using only the four fundamental operators (sequence, alterna-

tion, Kleene closure, grouping)

2. in a recursive manner reverse the element order of all sequences (being sure to maintain the correct

binding of Kleene operators to their arguments).

Violà.

3. Page 111, question 25

Solution: A RE Seq(x,y) matching non-zero length strings of alternating characters x and y:

Seq(x,y) = (x(yx)∗ (y|λ))|(y(xy)∗ (x|λ)
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Within each alternated pattern, the first character guarantees a non-zero length string, the Kleene closure

permits only the appropriate character pattern given the first character, and the final group permits the pattern

to end with either the starting character (in the Kleene closure) or the other character.

Now use Seq(x,y) to construct S the regular set of non-zero length strings from Σ = {a,b,c} beginning with

a and having no two letters in a row.

IDEA: We define β to an RE that matches a string of length greater than one beginning with a, followed

only by an alternating pattern of bs and cs (which means not ending in a).

β = (a(Seq(b,c)|Seq(c,b)))+

Recall Seq(b,c) matches {”b”,”bc”,”bcb”, . . .}. So (aSeq(b,c))+ matches {”ab”,”abc”,”abcb”, . . .}. Also,

Seq(b,c) may end with either a b or c — so avoid matching two sequential identical characters, we can never

have a Seq(x,y) immediately followed by any other Seq(x,y) or Seq(y,x). The construction of β avoids this

by always beginning with a.

Put it altogether

S = a|β|βa (1)

= a|β(a|λ)

(2)

Given you have Seq(x,y) and β defined, equation (1) on a quiz or exam would earn full credit.

It turns out you could probably reason out a correct DFA for the described pattern:
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and it seems counter-intuitive that such a long RE would produce such a simple DFA

a|(a(((b(cb)∗ (c|))|(c(bc)∗ (b|)))|((c(bc)∗ (b|))|(b(cb)∗ (c|)))))+(a|)

Between the two is a very large NFA (also posted on the schedule page) which will be one of the (possible)

outputs of the WRECK project this semester.

4. Page 111, question 26; Warning: In the question, AllButLast(a+b) = a+ should be interpreted as: “Applying

AllButLast to the regular set generated by a+b would generate a set of strings that would all be matched by the

RE a+. It does not mean AllButLast applied to the sequence of characters a, superscript +, and b would yield

a+ — which, of course it would if that is what the author meant.

Solution: IDEA: remove each edge to an accepting state for DFA R, make the “source” state of these edges

accepting states. Why? Because if we can create a DFA for AllButLast(R), then AllButLast(R) defines a

regular set.

BEWARE! Accepting states with self-incident edges.
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Suppose R = x(λ|y(q|kw∗)),

Let D be the DFA of R, which will turn into a DFA of AllButLast(R):
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1. Mark all the states in D that have an edge leading to an accepting state in D — including accepting

states with self-incident edges!
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2. Let A be the set of all accepting states without emanating edges. Remove the states in A and all edges

leading to states in A.
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3. Make all unmarked nodes normal nodes.
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4. Make all marked nodes accepting states.
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Check:

R AllButLast(R)

x λ

xyq xy

xyk xy

xykw xyk

(m > 1) xykwm xykwm−1

5. (a) Find a reasonably good tutorial or short article on LEX (one you can read and understand); provide this to

your group for their future benefit.

(b) Page 111, question 22; Hints: “before the blank” and “very last character” refers to ASCII table ordering.
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x12,345 is a regular expression: 12,345 x characters in a row. The book doesn’t mention this RE form in LEX,

so it is a good thing you found a good tutorial in part a.

Solution: See page111q22.l on disk, run make test-q22.
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