
Languages, their Generators and Parsers

Language is the set of finite length strings “over” a finite alphabet.

CFG is a Context Free Grammar — interesting languages are infinite, so we can’t just

write down all the possible strings of the language. We need a way to generate a

language, and a away to check the correctness (syntax) of some string over the

alphabet. CFGs provide both of these tools.

Languages, their Generators and Parsers

Language is the set of finite length strings “over” a finite alphabet.

“over” means generated by, alphabet is no longer letters as in REs, now “alphabet”

means “words” or more generally sequences of symbols.

The set of strings that constitute a language may be unbounded (“infinite”), but the

strings themselves are finite.

CFG is a Context Free Grammar — interesting languages are infinite, so we can’t just

write down all the possible strings of the language. We need a way to generate a

language, and a away to check the correctness (syntax) of some string over the

alphabet. CFGs provide both of these tools.

Context Sensitive Grammars do the same, but are more complicated to analyse (because they

define both the syntax and the semantics of a language). Not used in the nuts and

bolts of compilers.

Context Free Grammars

A compact representation of a language defined with four

terms:

1. A finite set of non-terminal symbols N

2. A finite alphabet of terminals Σ, an “end-of-file”

marker $, and the empty string symbol λ

3. A finite set of productions (rewriting rules) P

4. A start or goal symbol S that begins the process of

derivations

S → A M $

A → B C

| C M

B → b g h

C → s t

| λ

M → m

| n

| p

Context Free Grammars

A compact representation of a language defined with four

terms:
. . . but not the representation of all languages!

1. A finite set of non-terminal symbols N

2. A finite alphabet of terminals Σ, an “end-of-file”

marker $, and the empty string symbol λ
(the $ marker enforces “finite length strings” of the language)

3. A finite set of productions (rewriting rules) P

4. A start or goal symbol S that begins the process of

derivations

S → A M $

A → B C

| C M

B → b g h

C → s t

| λ

M → m

| n

| p

P

N = {S,A,B,C,M} Σ = {b,g,h,s, t,m,n, p}

Context Free Grammars

A compact representation of a language defined with four

terms:
. . . but not the representation of all languages!

1. A finite set of non-terminal symbols N

2. A finite alphabet of terminals Σ, an “end-of-file”

marker $, and the empty string symbol λ
(the $ marker enforces “finite length strings” of the language)

3. A finite set of productions (rewriting rules) P

4. A start or goal symbol S that begins the process of

derivations

S → A M $

A → B C

| C M

B → b g h

C → s t

| λ

M → m

| n

| p

P

Combining these four elements notationally, a grammar is G(N,Σ,P,S)
and its vocabulary V = N ∪Σ. Implicitly, N ∩Σ = /0.

NOTATION, Notation, notation

Recall: N is a set of grammar non-terminals, Σ is a set of grammar terminals, P is the set

of grammar production rules

◮ Augmented Σ: Σ$ = Σ∪{$}= Σ∪{$}
The set of language terminals along with end-of-input marker. Σ$ will come in handy

for several critical algorithms. We will also occasionally need Σλ.

◮ Uppercase Latin (X , K, TAIL, EXPR): symbols in N

◮ lower case Latin and punctuation (x, k, while, def, ?, !): elements of Σ

◮ Capital Script Latin (X ,K): sets of symbols from N ∪Σ

◮ Greek letters (α,β,γ): (N ∪Σ)∗ (where ∗ is the Kleene operator of REs)

So a (possibly empty) sequence of symbols from the grammar

Derivations

A CFG is a recipe for generating strings of a language.

◮ A rewrite is when a production rule

A → α replaces A with α;

rewriting with the special rule A → λ
deletes A.

◮ Each rewrite is a step in the derivation

of some string of the language.
◮ If we begin at S, the grammar’s start

symbol, the set of all possible (terminal

only) derived strings is the context free

language of the grammar, L(G).

S ⇒ A M $

S ⇒ C M M $

S ⇒ λ M M $

S ⇒ m M $

S ⇒ m p $

m p

Derivations

A CFG is a recipe for generating strings of a language.

◮ A rewrite is when a production rule

A → α replaces A with α;

rewriting with the special rule A → λ
deletes A.

◮ Each rewrite is a step in the derivation

of some string of the language.
◮ If we begin at S, the grammar’s start

symbol, the set of all possible (terminal

only) derived strings is the context free

language of the grammar, L(G).

S ⇒ A M $

S ⇒ C M M $

S ⇒ λ M M $

S ⇒ m M $

S ⇒ m p $

m p

The process of derivation can also be used to validate the syntax of some specific Σ∗$ —

by the end of the course this is what you’ll remember most :(

. . . recall Σ∗ are all possible strings made of language terminals, the $ suffix indicates finite sequences.

Derivation Notation and Sentential Forms

⇒ means “derives in one derivation step” If A → λ, then αAβ ⇒ αβ.

. . . recall lower Greek letters are (N ∪Σ)∗

⇒+ derives in one or more derivation step(s) A ⇒+ m.

⇒∗ derives in zero or more derivation steps S ⇒∗ A M $ S ⇒∗ m p.

. . . the latter two from the slide grammar .

https://cs.mcprogramming.com/static/comp/hr/1845e36bbc62482f/cfg-intro-grammar.pdf

Derivation Notation and Sentential Forms

⇒ means “derives in one derivation step” If A → λ, then αAβ ⇒ αβ.

. . . recall lower Greek letters are (N ∪Σ)∗

⇒+ derives in one or more derivation step(s) A ⇒+ m.

⇒∗ derives in zero or more derivation steps S ⇒∗ A M $ S ⇒∗ m p.

. . . the latter two from the slide grammar .

β is a sentential form of a CFG if S ⇒∗ β,1

SF(G) is the set of all sentential forms of grammar G (typically a CFG), and now we can

formalize the language of a grammar:

L(G) = {w ∈ Σ∗|S ⇒+ w}= SF(G)∩Σ∗

1 . . . more accurately: S ⇒∗ β $ or S ⇒+ β, but all texts seem to play fast and loose with these notations :(I try to be as consistent as possible.

https://cs.mcprogramming.com/static/comp/hr/1845e36bbc62482f/cfg-intro-grammar.pdf

Sentential Forms and L(G) by Example (take two)

A CFG is a recipe for generating strings of a language, it can also be used to verify the

syntax of a finite string from Σ∗.

◮ β is a sentential form of a CFG if S ⇒∗ β,

SF(G) is the set of all sentential forms of grammar G,

. . . so all the symbol sequences to the left of ⇒∗s are sentential

forms.

◮ Finite strings from Σ∗ that are also sentential forms, they also

define the language L of a grammar G,

L(G) = SF(G)∩Σ∗

so m p is in the language of this grammar.

S ⇒ A M $

S ⇒ C M M $

S ⇒ λ M M $

S ⇒ m M $

S ⇒ m p $

m p

Sentential Forms and L(G) by Example (take two)

A CFG is a recipe for generating strings of a language, it can also be used to verify the

syntax of a finite string from Σ∗.

◮ β is a sentential form of a CFG if S ⇒∗ β,

SF(G) is the set of all sentential forms of grammar G,

. . . so all the symbol sequences to the left of ⇒∗s are sentential

forms.

◮ Finite strings from Σ∗ that are also sentential forms, they also

define the language L of a grammar G,

L(G) = SF(G)∩Σ∗

so m p is in the language of this grammar.

S ⇒ A M $

S ⇒ C M M $

S ⇒ λ M M $

S ⇒ m M $

S ⇒ m p $

m p

Notice that we we treat λ M M $ ≡ M M because λ and $ are not in Σ, they are merely notational

placeholders (but soon we’ll see them become important algorithmic entities!)

Left or Right Most Derivations

What happens when you want to perform the next rewrite on

A ⇒C M

Which is rewritten first, C or M?

Left or Right Most Derivations

What happens when you want to perform the next rewrite on

A ⇒C M

Which is rewritten first, C or M?

Neither C first or M first is wrong, as long as we always work left to right (“leftmost”)

or right to left (“rightmost”).

This is more than just a convention, the choice dictates the complexity of the language you can

compile.

Which is an incredibly huge takeaway for this course!

Left or Right Most Derivations

What happens when you want to perform the next rewrite on

A ⇒C M

Which is rewritten first, C or M?

Left-Most Derivations

◮ Denoted with ⇒lm, ⇒∗
lm, ⇒+

lm

◮ Creates left sentential forms ⊆ SF(G)
◮ The type of “validation derivation” performed

by top down parsers, aka “recursive

descent parsing.”

Right-Most Derivations

◮ Denoted with ⇒rm, ⇒∗
rm, ⇒+

rm

◮ Creates right sentential forms ⊆ SF(G)
◮ Performed by bottom up parsers;

colloquially referred to as “canonical

parsing”.

◮ Many of our favorite programming

languages require right most derivations.

Left or Right Most Derivations

Rules

1 S → E $

2 E → PREFIX (E)
3 E → v TAIL

4 PREFIX → f

5 PREFIX → λ

6 TAIL → + E

7 TAIL → λ

Source string:

f (v + v)

Left most derivation
(1) S ⇒lm E $

(2) S ⇒lm PREFIX (E) $

(4) S ⇒lm f (E) $

(3) S ⇒lm f (v TAIL) $

(6) S ⇒lm f (v + E) $

(3) S ⇒lm f (v + v TAIL) $

(7) S ⇒lm f (v + v) $

Right most derivation
(1) S ⇒rm E $

(2) S ⇒rm PREFIX (E) $

(3) S ⇒rm PREFIX (v TAIL) $

(6) S ⇒rm PREFIX (v + E) $

(3) S ⇒rm PREFIX (v + v TAIL) $

(7) S ⇒rm PREFIX (v + v) $

(4) S ⇒rm f (v + v) $

(“Raw”) Parse Trees

◮ Root with S, the grammar start symbol or

goal.

◮ Interior nodes ∈ N, always non-terminals

of the language.

◮ An interior node and its children is a

derivation rewrite, the root is the LHS of a

production rule, the children are the RHS.

◮ When a derivation is complete, all leaves

∈ Σ+{$,λ} (to say “the language

terminals” is not 100% correct).

◮ Sentential forms are derivable from S, so all

sentential forms have a parse tree.

S

E $

PREFIX (E)

f v TAIL

+ E

v TAIL

λ

	From the ``Your Turn'' Department

