Languages, their Generators and Parsers

Language is the set of **finite length strings** "over" a finite alphabet.

CFG is a **Context Free Grammar** — interesting languages are infinite, so we can't just write down all the possible strings of the language. We need a way to **generate** a language, and a away to check the correctness (syntax) of some string over the alphabet. **CFG**s provide both of these tools.

Languages, their Generators and Parsers

Language is the set of **finite length strings** "over" a finite alphabet.

"over" means generated by, alphabet is no longer letters as in REs, now "alphabet" means "words" or more generally sequences of symbols.

The set of strings that constitute a language may be **unbounded** ("infinite"), but the strings themselves are finite.

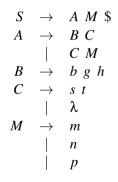
CFG is a **Context Free Grammar** — interesting languages are infinite, so we can't just write down all the possible strings of the language. We need a way to **generate** a language, and a away to check the correctness (syntax) of some string over the alphabet. **CFG**s provide both of these tools.

Context Sensitive Grammars do the same, but are more complicated to analyse (because they define both the **syntax** and the **semantics** of a language). Not used in the nuts and bolts of compilers.

Context Free Grammars

A compact representation of a language defined with four terms:

- 1. A finite set of **non-terminal** symbols N
- 2. A finite **alphabet of terminals** Σ , an "end-of-file" marker \$, and the empty string symbol λ
- 3. A finite set of **productions** (rewriting rules) P
- 4. A **start or goal symbol** *S* that begins the process of *derivations*



Context Free Grammars

A compact representation of a language defined with four terms:

... but not the representation of **all** languages!

- 1. A finite set of **non-terminal** symbols N
- 2. A finite **alphabet of terminals** Σ , an "end-of-file" marker \$, and the empty string symbol λ (the \$ marker enforces "finite length strings" of the language)
- 3. A finite set of productions (rewriting rules) P
- 4. A **start or goal symbol** *S* that begins the process of *derivations*

$$N = \{S, A, B, C, M\} \qquad \Sigma = \{b, g, h, s, t, m, n, p\}$$

 $\rightarrow A M$ $\tilde{A} \rightarrow B C$ C M $B \rightarrow b g h$ $C \rightarrow s t$ λ M \rightarrow m п р

Context Free Grammars

A compact representation of a language defined with four terms:

... but not the representation of **all** languages!

- 1. A finite set of **non-terminal** symbols N
- 2. A finite **alphabet of terminals** Σ , an "end-of-file" marker \$, and the empty string symbol λ (the \$ marker enforces "finite length strings" of the language)
- 3. A finite set of productions (rewriting rules) P
- 4. A **start or goal symbol** *S* that begins the process of *derivations*

Combining these four elements notationally, a grammar is $G(N, \Sigma, P, S)$ and its vocabulary $V = N \cup \Sigma$. Implicitly, $N \cap \Sigma = \emptyset$.

 $S \rightarrow A M$ $A \rightarrow B C$ C M $B \rightarrow b g h$ $C \rightarrow s t$ λ $M \rightarrow m$ п p

NOTATION, Notation, notation

Recall: *N* is a set of grammar non-terminals, Σ is a set of grammar terminals, *P* is the set of grammar production rules

• Augmented Σ : $\Sigma_{\$} = \Sigma \cup \{\$\} = \Sigma \cup \{\$\}$

The set of language terminals along with end-of-input marker. $\Sigma_{\$}$ will come in handy for several critical algorithms. We will also occasionally need Σ_{λ} .

- ▶ Uppercase Latin (X, K, TAIL, EXPR): symbols in N
- ▶ lower case Latin and punctuation (x, k, while, def, ?, !): elements of Σ
- Capital Script Latin (X, \mathcal{K}): sets of symbols from $N \cup \Sigma$
- Greek letters (α, β, γ): (N ∪ Σ)* (where * is the Kleene operator of REs) So a (possibly empty) sequence of symbols from the grammar

Derivations

A CFG is a recipe for generating strings of a language.

- A **rewrite** is when a production rule $A \rightarrow \alpha$ replaces *A* with α ; rewriting with the special rule $A \rightarrow \lambda$ deletes *A*.
- Each rewrite is a step in the derivation of some string of the language.
- If we begin at S, the grammar's start symbol, the set of all possible (terminal only) derived strings is the context free language of the grammar, L(G).

 $S \Rightarrow AM \$$ $S \Rightarrow CMM \$$ $S \Rightarrow \lambda MM \$$ $S \Rightarrow mM \$$ $S \Rightarrow mp \$$ mp

Derivations

A CFG is a recipe for generating strings of a language.

- A **rewrite** is when a production rule $A \rightarrow \alpha$ replaces *A* with α ; rewriting with the special rule $A \rightarrow \lambda$ deletes *A*.
- Each rewrite is a step in the derivation of some string of the language.
- If we begin at S, the grammar's start symbol, the set of all possible (terminal only) derived strings is the context free language of the grammar, L(G).

 $S \Rightarrow AM \$$ $S \Rightarrow CMM \$$ $S \Rightarrow \lambda MM \$$ $S \Rightarrow mM \$$ $S \Rightarrow mp \$$ mp

The process of **derivation** can also be used to validate the **syntax** of some specific Σ^* \$ — by the end of the course this is what you'll remember most : (

 \dots recall Σ^* are all possible strings made of language terminals, the \$ suffix indicates finite sequences.

Derivation Notation and Sentential Forms

 \Rightarrow means "derives in one derivation step" If $A \rightarrow \lambda$, then $\alpha A \beta \Rightarrow \alpha \beta$.

... recall lower Greek letters are $(N \cup \Sigma)^*$

 \Rightarrow^+ derives in one or more derivation step(s) $A \Rightarrow^+ m$.

 \Rightarrow^* derives in zero or more derivation steps $S \Rightarrow^* A M$ \$ $S \Rightarrow^* m p$.

... the latter two from the slide grammar.

Derivation Notation and Sentential Forms

 \Rightarrow means "derives in one derivation step" If $A \rightarrow \lambda$, then $\alpha A \beta \Rightarrow \alpha \beta$.

... recall lower Greek letters are $(N \cup \Sigma)^*$

 \Rightarrow^+ derives in one or more derivation step(s) $A \Rightarrow^+ m$.

 \Rightarrow^* derives in zero or more derivation steps $S \Rightarrow^* A M$ \$ $S \Rightarrow^* m p$.

... the latter two from the slide grammar.

 β is a sentential form of a CFG if $S \Rightarrow^* \beta$,¹

SF(G) is the set of all sentential forms of grammar G (typically a CFG), and now we can formalize the **language of a grammar**:

$$L(G) = \{ w \in \Sigma^* | S \Rightarrow^+ w \} = SF(G) \cap \Sigma^*$$

1... more accurately: $S \Rightarrow^* \beta$ s or $S \Rightarrow^+ \beta$, but all texts seem to play fast and loose with these notations : (I try to be as consistent as possible.

Sentential Forms and L(G) by Example (take two)

A CFG is a *recipe for generating strings* of a language, it can also be used to *verify the syntax* of a finite string from Σ^* .

- β is a sentential form of a CFG if S ⇒* β,
 SF(G) is the set of all sentential forms of grammar G,
 ... so all the symbol sequences to the left of ⇒*s are sentential forms.
- Finite strings from Σ* that are also sentential forms, they also define the language L of a grammar G,

$$L(G) = SF(G) \cap \Sigma^*$$

$$S \Rightarrow AMS$$

- $S \Rightarrow CMM$ \$
- $S \Rightarrow \lambda M M$

$$S \Rightarrow mM$$
 \$

$$S \Rightarrow m p$$

m p

so m p is in the language of this grammar.

Sentential Forms and L(G) by Example (take two)

A CFG is a *recipe for generating strings* of a language, it can also be used to *verify the syntax* of a finite string from Σ^* .

- Finite strings from Σ^* that **are also** sentential forms, they also define the language *L* of a grammar *G*,

$$L(G) = SF(G) \cap \Sigma^* \qquad S \Rightarrow mM \$$$

$$S \Rightarrow mp \$$$

m p

 $S \Rightarrow \lambda M M \$$

so m p is in the language of this grammar.

Notice that we we treat $\lambda M M \$ \equiv M M$ because λ and \$ are not in Σ , they are merely notational placeholders (but soon we'll see them become important algorithmic entities!)

What happens when you want to perform the next rewrite on

 $A \Rightarrow C M$

Which is rewritten first, C or M?

What happens when you want to perform the next rewrite on

 $A \Rightarrow C M$

Which is rewritten first, *C* or *M*?

Neither *C* first or *M* first is wrong, as long as we **always** work **left to right** ("leftmost") or right to left ("rightmost").

This is more than just a convention, the choice dictates the complexity of the language you can compile.

Which is an incredibly huge takeaway for this course!

What happens when you want to perform the next rewrite on

 $A \Rightarrow C M$

Which is rewritten first, C or M?

Left-Most Derivations

- Denoted with $\Rightarrow_{lm}, \Rightarrow^*_{lm}, \Rightarrow^+_{lm}$
- Creates left sentential forms \subseteq *SF*(*G*)
- The type of "validation derivation" performed by top down parsers, aka "recursive descent parsing."

Right-Most Derivations

- Denoted with \Rightarrow_{rm} , \Rightarrow_{rm}^* , \Rightarrow_{rm}^+
- Creates right sentential forms \subseteq *SF*(*G*)
- Performed by bottom up parsers; colloquially referred to as "canonical parsing".
- Many of our favorite programming languages require right most derivations.

Rules

- 1 $S \rightarrow E$ \$
- 2 $E \rightarrow PREFIX(E)$
- $3 \quad E \rightarrow v TAIL$
- 4 $PREFIX \rightarrow f$
- 5 $PREFIX \rightarrow \lambda$
- $6 \quad TAIL \rightarrow +E$
- $7 \quad \textit{TAIL} \ \rightarrow \ \lambda$

Source string:

$$f(v+v)$$

Left most derivation

Right most derivation

("Raw") Parse Trees

- Root with S, the grammar start symbol or goal.
- ► Interior nodes ∈ N, always non-terminals of the language.
- An interior node and its children is a derivation rewrite, the root is the LHS of a production rule, the children are the RHS.
- When a derivation is complete, all leaves ∈ Σ + {\$,λ} (to say "the language terminals" is not 100% correct).
- Sentential forms are derivable from S, so all sentential forms have a parse tree.

