

procedure MergeStates(accepts DFA D defined by
 transition table $T[\cdot][\cdot]$)
 returns a potentially new $T[\cdot][\cdot]$

$T[row][\cdot]$ uniquely identifies one state of D , and
 each $T[r][c]$ identifies the unique transition from
 state r to state $T[r][c]$ on input character $c \in \Sigma$.

```

let  $M$  be an empty set
let  $L$  be an empty stack
push ( $\{\text{accepting states of } D\}, \Sigma$ ) onto  $L$ 
push ( $\{\text{non-accepting states of } D\}, \Sigma$ ) onto  $L$ 
repeat (
     $S, C \leftarrow \text{pop } L$ 
    remove an element  $c$  from  $C$ 
    Partition states  $s$  in  $S$  by  $T[s][c]$  into sets
         $X_1, X_2, X_3, \dots, X_k$ 
    foreach ( $X_i$  of  $X_1, X_2, X_3, \dots, X_k$  with  $|X_i| > 1$ ) do (
        if ( $C = \emptyset$ ) then (
            add  $X_i$  to  $M$ 
        ) else (
            push ( $X_i, C$ ) onto  $L$ 
        )
    )
) while ( $|L| > 0$ )
foreach ( $S \in M$ ) do (
    merge rows of  $T[\cdot][\cdot]$  identified by states in  $S$ ,
    fixing up transitions to these states as well!
    if ( starting state of  $D \in S$  ) then (
        mark the newly merged row as the
        starting state of  $D$ 
    )
)
return  $T[\cdot][\cdot]$ 
```

Let DFA D be defined by transition table $T[\cdot][\cdot]$.
 $T[\text{row}][\cdot]$ uniquely identifies one state of D , and
each $T[r][c]$ identifies the unique transition from
state r to state $T[r][c]$ on input character $c \in \Sigma$.

```
repeat (
   $T' \leftarrow \text{MergeStates}( T )$ 
  if (  $|T| = |T'|$  ) then (
    break loop
  ) else (
     $T \leftarrow T'$ 
  )
)
```

$T'[\cdot][\cdot]$ is now a well (near?) optimized DFA equivalent
to D with a reasonable number of effective states.

(Dead or unreachable states may still exist.)