
Correct this Grammar to be LL(1)

Rules

1 S → A B $

2 S → B C $

3 A → A t C x

4 A → g

5 B → y A B

6 B → h

7 C → x C y

8 C → p

The grammar is not LL(1) due to the left-recursive rule 3.

Unfortunately, it doesn’t fit into our “left factoring pattern:”

A → Aγβ

A → β
⇒

A → βR

R → γβR

| λ

(γ may be “empty,” recall lower Greek letters are (Σ+N)∗)

While we can set γ = t C, β cannot be both g and x

What to do?

Correct this Grammar to be LL(1)

Rules

1 S → A B $

2 S → B C $

3 A → A t C x

4 A → g

5 B → y A B

6 B → h

7 C → x C y

8 C → p

Changing the A productions to

A → g A t C x

| λ

permits sentences with too many gs:

A ⇒ g A t C x

A ⇒ g g A t C x t C x

A ⇒ g g λ t p x t p x

The original grammar permits only one g per A recursion.

Correct this Grammar to be LL(1)

Rules

1 S → A B $

2 S → B C $

3 A → A t C x

4 A → g

5 B → y A B

6 B → h

7 C → x C y

8 C → p

We have to use a different (new) non-terminal on the RHS of the new

A rule:

A → A t C x

A → g
≡

A → g Q

Q → Q t C x

Q → λ

≡
A → g Q

Q → t C x Q

Q → λ

This equivilency for Q can be reasoned out with a little bit of thought,

but it also falls out of our left-factoring pattern if we bend the rules a

smidge and recognize Q can be written as Q → Q t C x λ and letting

γ = t C x and β = λ.

