Correct this Grammar to be LL(1)

The grammar is not $\operatorname{LL}(1)$ due to the left-recursive rule 3.

Unfortunately, it doesn't fit into our "left factoring pattern:"

$$
\begin{aligned}
& A \rightarrow A \gamma \beta \\
& A \rightarrow \beta
\end{aligned} \Rightarrow \begin{aligned}
& A \rightarrow \beta R \\
& R \rightarrow \gamma \beta R \\
& \mid \lambda
\end{aligned}
$$

(γ may be "empty," recall lower Greek letters are $(\Sigma+N) *$)
$6 B \rightarrow h$
$7 C \rightarrow x C y$
While we can set $\gamma=t C, \beta$ cannot be both g and x
$8 C \rightarrow p$

Correct this Grammar to be LL(1)

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A t C x$
4	$A \rightarrow g$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

Changing the A productions to

$$
\begin{aligned}
& A \rightarrow g A t C x \\
& \mid \\
& \lambda
\end{aligned}
$$

permits sentences with too many $g s$:

$$
\begin{aligned}
& A \Rightarrow g A t C x \\
& A \Rightarrow \operatorname{ggAtCxtCx} \\
& A \Rightarrow g g \lambda t p x t p x
\end{aligned}
$$

The original grammar permits only one g per A recursion.

Correct this Grammar to be LL(1)

$\#$	Rules
1	$S \rightarrow A B \$$
2	$S \rightarrow B C \$$
3	$A \rightarrow A t C x$
4	$A \rightarrow g$
5	$B \rightarrow y A B$
6	$B \rightarrow h$
7	$C \rightarrow x C y$
8	$C \rightarrow p$

We have to use a different (new) non-terminal on the RHS of the new A rule:

This equivilency for Q can be reasoned out with a little bit of thought, but it also falls out of our left-factoring pattern if we bend the rules a smidge and recognize Q can be written as $Q \rightarrow Q t C x \lambda$ and letting $\gamma=t C x$ and $\beta=\lambda$.

