Correct this Grammar to be LL(1)

The grammar is **not LL(1)** due to the left-recursive rule 3.

Rules

- 1 $S \rightarrow AB$
- 2 $S \rightarrow BC$ \$
- 3 $A \rightarrow A t C x$
- 4 $A \rightarrow g$

5
$$B \rightarrow yAB$$

6 B
ightarrow h

7
$$C \rightarrow x C y$$

8 C
ightarrow p

Unfortunately, it doesn't fit into our "left factoring pattern:"

$$egin{array}{ccccc} A & o & A\,\gammaeta \ A & o & eta R \ A & o & eta eta R \end{array} & \Rightarrow & eta R & o & \gammaeta R \ A & o & eta eta R \end{array}$$

(γ may be "empty," recall lower Greek letters are $(\Sigma+N)*)$

While we can set $\gamma = t C$, β cannot be both g and x

What to do?

Correct this Grammar to be LL(1)

Rules

- 1 $S \rightarrow AB$
- 2 $S \rightarrow BC$ \$
- 3 $A \rightarrow A t C x$
- 4 $A \rightarrow g$
- 5 $B \rightarrow yAB$
- $\begin{array}{ll} 6 & B \rightarrow h \\ 7 & C \rightarrow x \, C \, y \end{array}$

8 $C \rightarrow p$

- Changing the A productions to
- $\begin{array}{rrr} A & \to & g A t C x \\ & \mid & \lambda \end{array}$

permits sentences with too many gs:

 $A \Rightarrow gAtCx$ $A \Rightarrow ggAtCxtCx$ $A \Rightarrow gg\lambda tpxtpx$

The original grammar permits only one g per A recursion.

Correct this Grammar to be LL(1)

Rules

- 1 $S \rightarrow AB$ \$
- 2 $S \rightarrow BC$ \$
- 3 $A \rightarrow A t C x$
- 4 $A \rightarrow g$
- 5 $B \rightarrow yAB$
- $\begin{array}{ll} 6 & B \rightarrow h \\ 7 & C \rightarrow x \, C \, y \end{array}$

8 $C \rightarrow p$

We have to use a different (new) non-terminal on the RHS of the new *A* rule:

$$\begin{array}{ccccc} A & \to & A \, t \, C \, x \\ A & \to & g \end{array} & \equiv & \begin{array}{cccc} A & \to & g \, Q \\ Q & \to & Q \, t \, C \, x \end{array} & \equiv & \begin{array}{cccc} A & \to & g \, Q \\ Q & \to & \lambda \end{array} \\ Q & \to & \lambda \end{array}$$

This equivilency for Q can be reasoned out with a little bit of thought, but it also falls out of our left-factoring pattern if we bend the rules a smidge and recognize Q can be written as $Q \rightarrow Q t C x \lambda$ and letting $\gamma = t C x$ and $\beta = \lambda$.