Rules

S+ AB$
S —- BCS$
A— AtCx
A— g
B — yAB
B — h

NOoO ok WO = H

Correct this Grammar to be LL(1)

The grammar is not LL(1) due to the left-recursive rule 3.

Unfortunately, it doesn't fit into our “left factoring pattern:”

A — PR
- AvB = R — vYBR
— B A

(Y may be “empty,” recall lower Greek letters are (X + N)x)

A
A

While we can set Y=t C, B cannot be both g and x

What to do?



Rules

0O NOoO O WDN = H

S — ABS

S — BCS$

A — AtCx
A— g

B — yAB

B — h

C - xCy

C —p

Correct this Grammar to be LL(1)

Changing the A productions to

A — gAtCx
| A

permits sentences with too many gs:

A= gAtCx
A= ggAtCxtCx
A= gghtpxtpx

The original grammar permits only one g per A recursion.



Rules

0O NOoO O WDN = H

S — ABS

S — BCS$

A — AtCx
A— g

B — yAB

B — h

C - xCy

C —p

Correct this Grammar to be LL(1)

We have to use a different (new) non-terminal on the RHS of the new
A rule:

A — g0 A — g0
i : ALCx L, 0iCx = 0 — 1Cx0
g 0 — A o — A

This equivilency for Q can be reasoned out with a little bit of thought,
but it also falls out of our left-factoring pattern if we bend the rules a
smidge and recognize Q can be written as @ — Q' C x A and letting
y=tCxand=A.



