
LL(1) Limitations

# Rules

1 Stmt → i f Expr then StmtList endi f $

2 Stmt → i f Expr then StmtList else StmtList endi f $

3 StmtList → StmtList ; Stmt

4 StmtList → Stmt

5 Expr → var + Expr

6 Expr → var

1. Suppose we want to generate an LL(1) parsing table (LLT) for this grammar, will we

encounter problems? Discuss. . .



LL(1) Limitations

The problem is that rules 1 and 2 share common prefixes (if), as well do rules 5 & 6 (var).

# p ∈ P Computed By Predict Set

1 Stmt → i f Expr then StmtList endi f $ FirstSet(RHS) if

2 Stmt → i f Expr then StmtList else StmtList endi f $ FirstSet(RHS) if

3 StmtList → StmtList ; Stmt FirstSet(RHS) if

4 StmtList → Stmt FirstSet(RHS) if

5 Expr → var + Expr FirstSet(RHS) var

6 Expr → var FirstSet(RHS) var

+ ; else endif if then var $

Stmt ⋆

Expr ⋆

StmtList ⋆



Common-Prefix Consolidation (“Left Factoring”)

Solution: manipulate the rule suffices into a new non-terminal.

# p ∈ P Computed By Predict Set

1 Stmt → i f Expr then StmtList Q $ FirstSet(RHS) if

2 Q → endi f FirstSet(RHS) endif

3 Q → else StmtList endi f FirstSet(RHS) else

4 StmtList → StmtList ; Stmt FirstSet(RHS) if

5 StmtList → Stmt FirstSet(RHS) if

6 Expr → var W FirstSet(RHS) var

7 W → + Expr FirstSet(RHS) +

8 W → λ FollowSet(LHS) then

1. Add Q so that Stmt can be written with one

rule.

2. Add W so that Expr can be written with one

rule.

+ ; else endif if then var $

Stmt 1

Expr 6

StmtList ⋆

Q 3 2

W 7 8



Eliminate Left Recursion

We still have a problem with the predict set for StmtList, this is because

StmtList → StmtList ; Stmt

is a left recursive rule.

Solution: refactor the recursive rule of the grammar to be RIGHT recursive, adding a new

non-terminal to maintain the same language.



Eliminate Left Recursion

Solution: refactor the recursive rule of the grammar to be RIGHT recursive, adding a new

non-terminal to maintain the same language.

The grammar, before refactoring, permits statement lists of the form

StmtList → StmtList ; Stmt

| Stmt
⇒ Stmt ; Stmt ; Stmt ; ... ; Stmt

Making the rule right recursive lets a statement list begin the same way. . .

StmtList → Stmt R ⇒ Stmt ...

. . . now we just have to permit (; Stmt)⋆ with rules for R ...

StmtList → Stmt R

R → ; Stmt R

| λ



Eliminate Left Recursion

# p ∈ P Computed By Predict Set

1 Stmt → i f Expr then StmtList Q $ FirstSet(RHS) if

2 Q → endi f FirstSet(RHS) endif

3 Q → else StmtList endi f FirstSet(RHS) else

4 StmtList → Stmt R FirstSet(RHS) if

5 R → ; Stmt R FirstSet(RHS) ;

6 R → λ FollowSet(LHS) else, endif

7 Expr → var W FirstSet(RHS) var

8 W → + Expr FirstSet(RHS) +

9 W → λ FollowSet(LHS) then

A → Aγβ

A → β
⇒

A → βR

R → γβR

| λ

(γ may be “empty,” recall lower Greek letters are (Σ+N)∗)

+ ; else endif if then var $

Stmt 1

Expr 7

StmtList 4

Q 3 2

R 5 6 6

W 8 9



Dangling Brackets and LL(1) Grammars

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ
4 T → 〉
5 T → λ

The language for this grammar is

{ 〈 i 〉 j | i ≥ j ≥ 0 }

(there are always as many or more

opening brackets than closing brack-

ets).
〉 〈 $

P 1 1

S 3 2 3

T ⋆ 5

A seemingly unimportant language with a predict set conflict.

# p ∈ P Computed By Predict Set

1 P → S $ FirstSet(RHS) 〈, $

2 S → 〈 S T FirstSet(RHS) 〈

3 S → λ FollowSet(LHS) 〉, $

4 T → 〉 FirstSet(RHS) 〉

5 T → λ FollowSet(LHS) 〉, $



Dangling Brackets and LL(1) Grammars

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ
4 T → 〉
5 T → λ

The language for this grammar is

{ 〈 i 〉 j | i ≥ j ≥ 0 }

(there are always as many or more

opening brackets than closing brack-

ets).
〉 〈 $

P 1 1

S 3 2 3

T ⋆ 5

In the sentence 〈 〈 〉, the closing bracket could be associated with

either of the opening brackets depending on the order in which rules 4

and 5 are applied.

“T doesn’t know” to which opening bracket a closing bracket belongs.

P

S $

� S T

� S T �

� �

P

S $

� S T

� S T �

� �



Dangling Brackets and LL(1) Grammars

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ
4 T → 〉
5 T → λ

The language for this grammar is

{ 〈 i 〉 j | i ≥ j ≥ 0 }

(there are always as many or more

opening brackets than closing brack-

ets).
〉 〈 $

P 1 1

S 3 2 3

T ⋆ 5

This is the “dangling bracket” problem that

LL(1) grammars cannot parse.

. . . and why should we care?



Dangling Brackets, if-then-else and LL(1) Grammars

Why do we care about this silly bracket language?

Because it is near and dear to a favorite programming construct. . .

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ

4 T → 〉
5 T → λ

⇛

# Rules

1 Program → Stmt $

2 Stmt → 〈 Stmt T

3 Stmt → λ

4 T → 〉
5 T → λ

⇛
1

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ

4 T → else Stmt

5 T → λ

1 Substitute 〈 with i f query then and 〉 with else Stmt.

Technically, this is no longer DBL (we’ve added terminals), but it demonstrates DBL’s closeness to

if-then-else.



Dangling Brackets, if-then-else and LL(1) Grammars

But everyone knows the “dangling bracket” belongs to the nearest sibling before it...

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ

4 T → 〉
5 T → λ

≡

# Rules

1 P → S $

2 S → 〈 S

3 S → T

4 T → 〈 T 〉
5 T → λ

Both grammars generate the same language, namely

{ 〈 i 〉 j | i ≥ j ≥ 0}

But the new grammar (with rule 4: T → 〈 T 〉) assures us that paired brackets belong to the same

parse tree node, T ’s λ production can’t be misplaced!

. . . would anyone like to see the predict sets for this new improved grammar?



Dangling Brackets, if-then-else and LL(1) Grammars

Now it is S that doesn’t know if an opening bracket has a closing bracket (use rule 3 S → T ) or

does not (use rule 2 S → 〈 T ).

〉 〈 $

P 1 1

S 3 2 3

T ⋆ 5

# Rules

1 P → S $

2 S → 〈 S T

3 S → λ

4 T → 〉
5 T → λ

≡

# Rules

1 P → S $

2 S → 〈 S

3 S → T

4 T → 〈 T 〉
5 T → λ

〉 〈 $

P 1 1

S ⋆ 3

T 5 4 5

# p ∈ P Computed By Predict Set

1 P → S $ FirstSet(RHS) 〈, $

2 S → 〈 S FirstSet(RHS) 〈

3 S → T FirstSet(RHS)
⋃

FollowSet(LHS) 〈, $

4 T → 〈 T 〉 FirstSet(RHS) 〈

5 T → λ FollowSet(LHS) 〉, $



Dangling Brackets, if-then-else and LL(1) Grammars

Trying to factor out common prefixes for S is

fruitless (you are encouraged to try it!). You will

convince yourself that no amount of look ahead

or factoring solves this problem

(for arbitrary i and j).

# Rules

1 P → S $

2 S → 〈 S

3 S → T

4 T → 〈 T 〉
5 T → λ

〉 〈 $

P 1 1

S ⋆ 3

T 5 4 5

# p ∈ P Computed By Predict Set

1 P → S $ FirstSet(RHS) 〈, $

2 S → 〈 S FirstSet(RHS) 〈

3 S → T FirstSet(RHS)
⋃

FollowSet(LHS) 〈, $

4 T → 〈 T 〉 FirstSet(RHS) 〈

5 T → λ FollowSet(LHS) 〉, $



Dangling Brackets, if-then-else: A NEW HOPE

All is not lost! A critical observation can be made that tells us which of rules 4 and 5 to use at the

LLT conflict. . . any thoughts?

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ

4 T → else Stmt

5 T → λ

else if query then $

Program 1 1

Stmt 3 2 3

T ⋆ 5

# p ∈ P Computed By Predict Set

1 Program → Stmt $ FirstSet(RHS) if, $

2 Stmt → i f query then Stmt T FirstSet(RHS) if

3 Stmt → λ FollowSet(LHS) else, $

4 T → else Stmt FirstSet(RHS) else

5 T → λ FollowSet(LHS) else, $



Dangling Brackets, if-then-else: A NEW HOPE

We should use rule 4, since it isn’t represented anywhere else in the LLT, and without rule 4, we

would be parsing a different language.

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ

4 T → else Stmt

5 T → λ

else if query then $

Program 1 1

Stmt 3 2 3

T 4 5

# p ∈ P Computed By Predict Set

1 Program → Stmt $ FirstSet(RHS) if, $

2 Stmt → i f query then Stmt T FirstSet(RHS) if

3 Stmt → λ FollowSet(LHS) else, $

4 T → else Stmt FirstSet(RHS) else

5 T → λ FollowSet(LHS) else, $



Didn’t if-then-else used to work with LL(1)?

Our first example clearly had a language with if-then-else structures and we were able to

generate LLT tables after common prefix refactoring and avoiding left recursion.

Then we waded through the slough of dangling brackets, now it’s unclear what’s what :(

# Rules

1 Stmt → i f Expr then StmtList Q $

2 Q → endi f

3 Q → else StmtList endi f

4 StmtList → Stmt R

5 R → ; Stmt R

6 R → λ
7 Expr → var W

8 W → + Expr

9 W → λ

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ
4 T → else Stmt

5 T → λ



Didn’t if-then-else used to work with LL(1)?

Our first example clearly had a language with if-then-else structures and we were able to

generate LLT tables after common prefix refactoring and avoiding left recursion.

Then we waded through the slough of dangling brackets, now it’s unclear what’s what :(

# Rules

1 Stmt → i f Expr then StmtList Q $

2 Q → endi f

3 Q → else StmtList endi f

4 StmtList → Stmt R

5 R → ; Stmt R

6 R → λ
7 Expr → var W

8 W → + Expr

9 W → λ

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ
4 T → else Stmt

5 T → λ

See the difference?



Languages with “endif” . . .

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T

3 Stmt → λ

4 T → else Stmt

5 T → λ

else if query then $

Program 1 1

Stmt 3 2 3

T ⋆ 5

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T endi f

3 Stmt → λ

4 T → else Stmt

5 T → λ

else endif if query then $

Program 1 1

Stmt 3 3 2 3

T 4 5



Languages with “endif” . . .

By pairing i f beginnings to endi f endings, many recursive descent parsers fixed their “dangling

bracket” problem.

This works because it turns these control structures into a matched bracket language, which you

knew from a recent LGA is an LL(1) language.

# Rules

1 Program → Stmt $

2 Stmt → i f query then Stmt T endi f

3 Stmt → λ

4 T → else Stmt

5 T → λ

# Rules

1 S → M $

2 M → 〈 M 〉
3 M → λ

(Matched Bracket Language)


