Distribute the following questions across the members of your group. You will share your solutions (and most importantly the *method* of your solutions) during the next lecture period. Divide up the questions so that **each** question has at least two solutions from different group members.

Questions for Review

LGA 3: Are these all the same languages after refactoring? Are they interpreted the same?	 4
LGA 4: Can the palindrome grammar be $LL(k)$ for any k ?	 9

1. Refactor the following grammars by consolidating the common prefixes until they are LL(1).

(a) $S \rightarrow a b c d e \$$ $ a b c q y z \$$ $ a b c q r s \$$ $ T U \$$ $T \rightarrow x a b$ $ \lambda$ $U \rightarrow G z$ $G \rightarrow d$ $ q$ (b)	$\begin{array}{cccc} START & \rightarrow \\ & \\ A & \rightarrow \\ B & \rightarrow \\ & \\ C & \rightarrow \\ & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Solution: question 1 part a Original $S \rightarrow a b c d e \$$ a b c q y z \$ a b c q r s \$ T U \$ $T \rightarrow x a b$ $ \lambda$ $U \rightarrow G z$ $G \rightarrow d$		
Add symbol <i>H</i> to resolve conflicts for <i>S</i> $S \rightarrow a b c H \$$ T U \$ $H \rightarrow d e$ q y z q r s $T \rightarrow x a b$ $ \lambda$ $U \rightarrow G z$ $G \rightarrow d$ q	\Rightarrow	Add symbol J to resolve conflicts for H $S \rightarrow a b c H $ T U $H \rightarrow d e$ q J $J \rightarrow y z$ r s $T \rightarrow x a b$ $ \lambda$ $U \rightarrow G z$ $G \rightarrow d$ q

Solution: question 1 part b Original $START \rightarrow A \times B $ C A q C r $A \rightarrow x y B$ $B \rightarrow g h m$ g k n g h q $C \rightarrow d b f$ $ \lambda$	Add symbol H to resolve conflicts for START $START \rightarrow A H \$$ $\mid C \$$ $H \rightarrow x B$ $\mid q C r$ $A \rightarrow x y B$ $B \rightarrow g h m$ $\mid g k n$ $\mid g h q$ $C \rightarrow d b f$ $\mid \lambda$	
Add symbol J to resolve conflicts for B $START \rightarrow A H $ C $H \rightarrow x B$ q C r $A \rightarrow x y B$ $B \rightarrow g J$ $J \rightarrow h m$ k n h q $C \rightarrow d b f$ $ \lambda$	$\Rightarrow \qquad \begin{array}{c} Add \text{ symbol } M \text{ to resolve conflicts for } J \\ START \rightarrow A H \$ \\ & \mid C \$ \\ H \rightarrow x B \\ & \mid q C r \\ A \rightarrow x y B \\ B \rightarrow g J \\ J \rightarrow h M \\ & \mid k n \\ M \rightarrow m \\ & \mid q \\ C \rightarrow d b f \\ & \mid \lambda \end{array}$	

Solution: question 1 part c Simple rote approach for <i>B</i> and <i>C</i> conflicts fails $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		S production START S B H C V	on rule a 1 * 5 10	e confl b 1 3 4 10	icts t	for te	ermi e 6	nal <i>a</i> g 7	s in F	irst (B	3)
10 $V \rightarrow Bd$ Original $START \rightarrow S \$$ $S \rightarrow a S e$ $ B \\ B \rightarrow b a e B e$ $ a e C \\ b a e B g \\ C \rightarrow c c C e \\ c c B d$ Add symbols T and U to resolve conflicts for S $START \rightarrow S \$$ $S \rightarrow a T$ b a e B U $T \rightarrow S e$ $ C \\ U \rightarrow e$ $ g \\ B \rightarrow b a e B e \\ a e C \\ b a e B g \\ C \rightarrow c c C e \\ c c B d$	\Rightarrow	Add symbo START S T U B W C V	$ \begin{array}{c} \text{ols } W \\ \rightarrow \\ & \rightarrow \\ & + \\ $	Rev ST and V S \$ a T b a S e C e g b a c c e g c $cCegc$ $cCcCegc$ $cCCcCCCCCCCCCC$	vrite <i>FAR</i> ² to r <i>e B</i> <i>C</i> <i>V</i>	S T S B C esolv U	$ \xrightarrow{\rightarrow} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $	S \$ a S b a b a b a c c c c c c onflic	S Te E E E E E E E E E E E E E E E E E E	e g g r <i>B</i> ar	\Rightarrow and C

2. ("Double coverage" for this question can be one group member doing the coding, and another doing the testing.) Incorporate the solution to question 3 of lga-ll1-parsing.pdf into your group's "grammar code"; test with parser-test.tok.cfg and input parser-test.tok — see also show_llparse-parser-test.tok.pdf.

3. Refactor these grammars' left-recursive rules to make the grammar LL(1) (some grammars may require common prefix refactoring as well).

(a)

$$S \rightarrow QR \ (b)$$

$$Q \rightarrow Qx Qy \qquad (b)$$

$$Q \rightarrow Qx Qy \qquad SUM \ SUM \rightarrow SUM \ PROD \ PROD$$

$$Q \rightarrow Rr \ st xy \qquad PROD \rightarrow PROD \ mult \ POWER \ POWER \ POWER \ val$$

(c)

S	\rightarrow	FUNCTIONS \$
FUNCTIONS	\rightarrow	FUNCTIONS FUNCTION
		FUNCTION
FUNCTION	\rightarrow	С
		Р
	Í	Н
С	\rightarrow	type id oparen CPARAMS cparen
Р	\rightarrow	def id oparen PPARAMS cparen
H	\rightarrow	id dblcln type HPARAMS
CPARAMS	\rightarrow	CPARAMS comma type id
		λ
PPARAMS	\rightarrow	PPARAMS comma id
		λ
HPARAMS	\rightarrow	HPARAMS rarrow type
		type

```
Solution: question 3 part a
                          S -> Q R $
                           # "Q" thought process
                           \# gamma = x, beta = Q y fails because the
                           # rewrite (with new terminal H) would be
                           # Q −> Q y H
                           # and we still have left-recursion :(
                           # gamma = x Q, beta = y fails because rewrite
                           # Q −> y H
                           # H -> x Q y H
                          # H | lambda
                           # would permit y x y ..., whereas the language permits
                           # sentences beginning with only x, r or s.
                          \# gamma = lambda, beta = x Q y, new nt H
 S \rightarrow Q R 
                          # notice that with gamma = lambda,
 Q
    \rightarrow x Q y H
                          # beta must begin with First(Q)={x}
 Η
    \rightarrow x Q y H
                        Q -> x Q y H
        λ
     H −> х Q у H
 Q
    \rightarrow \lambda
                            | lambda
    \rightarrow st U V
 R
                       # since beta =/=>* lambda,
 V
    \rightarrow r s t U V
         λ
                          # must retain the Q -> lambda rule
     U
                          Q -> lambda
     \rightarrow
         хy
         ууу
         λ
                          # "R" thought process
                           # We want _one_ recursive rule, so think of
                           # R -> R r s t U
                          # U -> x y | y y y
                           # now let gamma = r beta=s t U new nt V
                          R-> s t U V
                          V -> r s t U V
                             | lambda
                          U -> x y | y y y
                          \# We need to permit just R => s t but including
                           # this base case rule will create a predict set conflict :(
                           # But we can also permit R => s t by letting
                          U -> lambda
                           # The lambda rule for U also permits strstxy,
                           #strstxyy
```

Compilers

```
Solution: question 3 part b
      S \rightarrow SUM 
   SUM \rightarrow PROD V
      V \rightarrow plus PROD V
           | λ
  PROD \rightarrow POWER U
      U \rightarrow mult POWER U
           | λ
 POWER \rightarrow val W
      W \rightarrow exp POWER
          | λ
S -> SUM $
# ___ candidate substitutions ___ (new terminal V)
# gamma = lambda, beta = plus PROD
# SUM -> plus PROD V
# V -> plus PROD V
# V | lambda
# fails because sentences begin with val ...,
# and this would permit plus val ...
#
# gamma = plus PROD, beta = lambda
# SUM -> V
# V -> plus PROD V
#
     | lambda
# fails because it would not only permit sentences
# to begin with plus, bit it would also permit empty
# (lambda) sentences into the language
#
# (let's hope this works...)
# gamma = plus, beta = PROD
SUM -> PROD V
 V -> plus PROD V
   | lambda
# since V=>*lambda, we don't need a SUM -> PROD rule anymore.
# The logic for rewriting PROD non-terminals very much
# identical, the symbols simply change from SUM and PROD to
# PROD and POWER (re-written with new non-terminal U)
PROD -> POWER U
  U -> mult POWER U
     | lambda
# For completeness, we need to do common prefix refactoring
# to make this an LL(1) language, using new non-terminal W
POWER -> val W
   W -> exp POWER
      | lambda
```

Compilers

```
Solution: question 3 part c
            S \rightarrow FUNCTIONS 
 FUNCTIONS \rightarrow FUNCTION V
           V \rightarrow FUNCTION V
               | λ
  FUNCTION \rightarrow C
                | P
                H
           С
              \rightarrow type id oparen CPARAMS cparen
           P \rightarrow def id oparen PPARAMS cparen
           H \rightarrow id \ dblcln \ type \ HPARAMS
    CPARAMS \rightarrow comma type id CPARAMS
                λ
    PPARAMS \rightarrow comma \ id \ PPARAMS
                | λ
   HPARAMS \rightarrow type Q
           Q \rightarrow rarrow type Q
               | λ
S -> FUNCTIONS $
# ____ candidate substitutions ____ (new terminal V)
# gamma = FUNCTION, beta = lambda
# FUNCTIONS -> V
      V -> FUNCTION V
#
            | lambda
#
\# fails because FUNCTIONS =/=>* lambda in the original grammar, and this will
# permit just that.
# gamma = lambda, beta = FUNCTION
# (another hint this is the decomposition we want is that the base
# rule was FUNCTIONS -> FUNCTION, and this often (not always) means
# we want beta = FUNCTION)
FUNCTIONS -> FUNCTION V
       V -> FUNCTION V
                  | lambda
FUNCTION -> C | P | H
C -> type id oparen CPARAMS cparen
P -> def id oparen PPARAMS cparen
H -> id dblcln type HPARAMS
# ___ candidate substitutions ___ (new terminal U)
# gamma = comma type, beta = id
# CPARAMS -> id U
# U -> comma type id U
#
       | lambda
# fails because it permits ... oparen id
# whereas the original grammar requires ... oparen comma type id
# gamma = comma, beta = type id
```

Compilers

```
# CPARAMS -> type id U
# U -> comma type id U
# | lambda
# fails because it permits ... oparen type id
# whereas the original grammar requires ... oparen comma type id
# gamma = lambda, beta = comma type id
# CPARAMS -> comma type id U
# U -> comma type id U
# U | lambda
# Fails as it has predict set conflicts for U
# gamma = comma type id, beta = lambda
# CPARAMS −> U
# U -> comma type id U
# | lambda
# This works! And it hints a simpler re-write not requiring a U:
CPARAMS -> comma type id CPARAMS
         | lambda
# via much the same logic, a simple re-write for PARAMS is
PPARAMS -> comma id PPARAMS
          | lambda
# ____ candidate substitutions ____ (new terminal Q)
# gamma = lambda, beta = rarrow type
# HPARAMS -> rarrow type Q
# Q -> rarrow type Q
# | lambda
# fails as it doesn't permit HPARAMS =>* type
# gamma = rarrow type, beta = lambda
# HPARAMS -> Q
# Q -> rarrow type Q
       | lambda
#
# fails as it permits HPARAMS =>* lambda
#
# gamma = rarrow, beta = type
HPARAMS -> type Q
Q -> rarrow type Q
            | lambda
```

Solution:								
a b	# $p \in P$	Computed By	Predict Set					
$S \rightarrow T S$	$1 S \to T $	FirstSet(RHS)	a,b					
$I \rightarrow a P a$	$2 T \rightarrow a P a$	FirstSet(RHS)	a					
	3 $T \rightarrow b P b$	FirstSet(RHS)	b		2	h (2	
u	4 $T \rightarrow a$	FirstSet(RHS)	a	S	d 1	1	, ,	
$P \rightarrow a P a$	5 $T \rightarrow b$	FirstSet(RHS)	b		1	1		
h P h	$6 P \to a P a$	FirstSet(RHS)	a	P	÷	÷		
	7 $P \rightarrow b P b$	FirstSet(RHS)	b	-	~	~		
b	8 $P \rightarrow a$	FirstSet(RHS)	a					
λ	9 $P \rightarrow b$	FirstSet(RHS)	b					
	10 $P \rightarrow \lambda$	FollowSet(LHS)	a,b					
				_				
c e t	# $p \in P$	Computed By	Predict Set					
$S \rightarrow I S$ $T \rightarrow T A$	$1 \qquad S \rightarrow T \$	FirstSet(RHS)	a,b					
$I \rightarrow d I A$ $\downarrow b T P$	$2 T \to a TA$	FirstSet(RHS)	a					
$\begin{array}{ccc} & & & \\ & & & \\ TA & \rightarrow & Pa \end{array}$	$3 T \rightarrow b TB$	FirstSet(RHS)	b			h	Ś	
$1 \land \rightarrow 1 \ u$ $\downarrow \lambda$	$4 TA \to Pa$	FirstSet(RHS)	a,b	S	а 1	1	Ŷ	
$TB \rightarrow Pb$	5 $TA \rightarrow \lambda$	FollowSet(LHS)	\$		2	3		
λ	$6 TB \to Pb$	FirstSet(RHS)	a,b	TA	4	4	5	
$P \rightarrow a PA$	7 $TB \rightarrow \lambda$	FollowSet(LHS)	\$	TB	6	6	7	
b PB	8 $P \rightarrow a PA$	FirstSet(RHS)	a	Р	*	*		
λ	9 $P \rightarrow b PB$	FirstSet(RHS)	b	PA	*	*		
$PA \rightarrow P a$	$10 P \rightarrow \lambda$	FollowSet(LHS)	a,b	PB	*	*		
λ	$11 PA \rightarrow Pa$	FirstSet(RHS)	a,b					
$PB \rightarrow Pb$	$12 PA \rightarrow \lambda$	FollowSet(LHS)	a,b					
λ	$13 PB \rightarrow Pb$	FirstSet(RHS)	a,b					
	14 $PB \rightarrow \lambda$	FollowSet(LHS)	a,b					

4. Write a CFG for a language with two terminals ({a,b}) that represents all **non-empty** strings that are palindromes. Is your language LL(1)? If not can you refactor it using common prefix or left recursion refactoring so that it is?