
Compilers Learning Group Assignment #16 LL(1) Limitations

Distribute the following questions across the members of your group. You will share your solutions (and most impor-

tantly the method of your solutions) during the next lecture period. Divide up the questions so that each question has

at least two solutions from different group members.

Questions for Review

LGA 3: Are these all the same languages after refactoring? Are they interpreted the same? 4

LGA 4: Can the palindrome grammar be LL(k) for any k? . 9

1. Refactor the following grammars by consolidating the common prefixes until they are LL(1).

(a)
S → a b c d e $

| a b c q y z $

| a b c q r s $

| T U $

T → x a b

| λ

U → G z

G → d

| q

(b)
START → A x B $

| C $

| A q C r $

A → x y B

B → g h m

| g k n

| g h q

C → d b f

| λ

(c)
START → S $

S → a S e

| B

B → b a e B e

| a e C

| b a e B g

C → c c C e

| c c B d

Solution: question 1 part a
Original

S → a b c d e $

| a b c q y z $

| a b c q r s $

| T U $

T → x a b

| λ

U → G z

G → d

| q

Add symbol H to resolve conflicts for S

S → a b c H $

| T U $

H → d e

| q y z

| q r s

T → x a b

| λ

U → G z

G → d

| q

⇒

Add symbol J to resolve conflicts for H

S → a b c H $

| T U $

H → d e

| q J

J → y z

| r s

T → x a b

| λ

U → G z

G → d

| q

Compilers Learning Group Assignment #16 LL(1) Limitations

Solution: question 1 part b

Original

START → A x B $

| C $

| A q C r $

A → x y B

B → g h m

| g k n

| g h q

C → d b f

| λ

⇒

Add symbol H to resolve conflicts for START

START → A H $

| C $

H → x B

| q C r

A → x y B

B → g h m

| g k n

| g h q

C → d b f

| λ

⇒

Add symbol J to resolve conflicts for B

START → A H $

| C $

H → x B

| q C r

A → x y B

B → g J

J → h m

| k n

| h q

C → d b f

| λ

⇒

Add symbol M to resolve conflicts for J

START → A H $

| C $

H → x B

| q C r

A → x y B

B → g J

J → h M

| k n

M → m

| q

C → d b f

| λ

Page 2

Compilers Learning Group Assignment #16 LL(1) Limitations

Solution: question 1 part c
Simple rote approach for B and C conflicts fails...

Rules

1 START → S $

2 S → a S e

3 S → B

4 B → b a e B H

5 B → a e C

6 H → e

7 H → g

8 C → c c V

9 V → C e

10 V → B d

S production rule conflicts for terminal a in First(B)...
a b c d e g $

START 1 1

S ⋆ 3

B 5 4

H 6 7

C 8

V 10 10 9

Original

START → S $

S → a S e

| B

B → b a e B e

| a e C

| b a e B g

C → c c C e

| c c B d

⇒

Rewrite S

START → S $

S → a S e

| b a e B e

| a e C

| b a e B g

B → b a e B e

| a e C

| b a e B g

C → c c C e

| c c B d

⇒

Add symbols T and U to resolve conflicts for S

START → S $

S → a T

| b a e B U

T → S e

| C

U → e

| g

B → b a e B e

| a e C

| b a e B g

C → c c C e

| c c B d

⇒

Add symbols W and V to resolve conflicts for B and C

START → S $

S → a T

| b a e B U

T → S e

| C

U → e

| g

B → b a e B W

| a e C

W → e

| g

C → c c V

V → C e

| B d

2. (“Double coverage” for this question can be one group member doing the coding, and another doing the

testing.) Incorporate the solution to question 3 of lga-ll1-parsing.pdf into your group’s ”grammar code”;

test with parser-test.tok.cfg and input parser-test.tok — see also

show llparse-parser-test.tok.pdf .

Page 3

https://cs.mcprogramming.com/static/comp/hr/f8d27d0045ce46e9/lga-ll1-parsing.pdf
https://cs.mcprogramming.com/static/comp/hr/e8ea986acca33751/parser-test.tok.cfg
https://cs.mcprogramming.com/static/comp/hr/dd62333cea44caa6/parser-test.tok
https://cs.mcprogramming.com/static/comp/hr/da154da7cc556b29/show_llparse-parser-test.tok.pdf

Compilers Learning Group Assignment #16 LL(1) Limitations

3. Refactor these grammars’ left-recursive rules to make the grammar LL(1) (some grammars may require common

prefix refactoring as well).

(a)
S → Q R $

Q → Q x Q y

| λ

R → R r s t x y

| R r s t y y y

| s t

(b)
S → SUM $

SUM → SUM plus PROD

| PROD

PROD → PROD mult POWER

| POWER

POWER → val exp POWER

| val

(c)
S → FUNCT IONS $

FUNCT IONS → FUNCT IONS FUNCTION

| FUNCT ION

FUNCT ION → C

| P

| H

C → type id oparen CPARAMS cparen

P → de f id oparen PPARAMS cparen

H → id dblcln type HPARAMS

CPARAMS → CPARAMS comma type id

| λ

PPARAMS → PPARAMS comma id

| λ

HPARAMS → HPARAMS rarrow type

| type

Page 4

Compilers Learning Group Assignment #16 LL(1) Limitations

Solution: question 3 part a

S → Q R $

Q → x Q y H

H → x Q y H

| λ

Q → λ

R → s t U V

V → r s t U V

| λ

U → x y

| y y y

| λ

S -> Q R $

"Q" thought process

gamma = x, beta = Q y fails because the

rewrite (with new terminal H) would be

Q -> Q y H

and we still have left-recursion :(

gamma = x Q, beta = y fails because rewrite

Q -> y H

H -> x Q y H

H | lambda

would permit y x y ..., whereas the language permits

sentences beginning with only x, r or s.

gamma = lambda, beta = x Q y, new nt H

notice that with gamma = lambda,

beta must begin with First(Q)={x}

Q -> x Q y H

H -> x Q y H

| lambda

since beta =/=>* lambda,

must retain the Q -> lambda rule

Q -> lambda

"R" thought process

We want _one_ recursive rule, so think of

R -> R r s t U

U -> x y | y y y

now let gamma = r beta=s t U new nt V

R -> s t U V

V -> r s t U V

| lambda

U -> x y | y y y

We need to permit just R => s t but including

this base case rule will create a predict set conflict :(

But we can also permit R => s t by letting

U -> lambda

The lambda rule for U also permits s t r s t x y,

s t r s t x y y

Page 5

Compilers Learning Group Assignment #16 LL(1) Limitations

Solution: question 3 part b
S → SUM $

SUM → PROD V

V → plus PROD V

| λ

PROD → POWER U

U → mult POWER U

| λ

POWER → val W

W → exp POWER

| λ

S -> SUM $

__ candidate substitutions __ (new terminal V)

gamma = lambda, beta = plus PROD

SUM -> plus PROD V

V -> plus PROD V

V | lambda

fails because sentences begin with val ...,

and this would permit plus val ...

#

gamma = plus PROD, beta = lambda

SUM -> V

V -> plus PROD V

| lambda

fails because it would not only permit sentences

to begin with plus, bit it would also permit empty

(lambda) sentences into the language

#

(let’s hope this works...)

gamma = plus, beta = PROD

SUM -> PROD V

V -> plus PROD V

| lambda

since V=>*lambda, we don’t need a SUM -> PROD rule anymore.

The logic for rewriting PROD non-terminals very much

identical, the symbols simply change from SUM and PROD to

PROD and POWER (re-written with new non-terminal U)

PROD -> POWER U

U -> mult POWER U

| lambda

For completeness, we need to do common prefix refactoring

to make this an LL(1) language, using new non-terminal W

POWER -> val W

W -> exp POWER

| lambda

Page 6

Compilers Learning Group Assignment #16 LL(1) Limitations

Solution: question 3 part c
S → FUNCTIONS $

FUNCTIONS → FUNCTION V

V → FUNCTION V

| λ

FUNCT ION → C

| P

| H

C → type id oparen CPARAMS cparen

P → de f id oparen PPARAMS cparen

H → id dblcln type HPARAMS

CPARAMS → comma type id CPARAMS

| λ

PPARAMS → comma id PPARAMS

| λ

HPARAMS → type Q

Q → rarrow type Q

| λ

S -> FUNCTIONS $

__ candidate substitutions __ (new terminal V)

gamma = FUNCTION, beta = lambda

FUNCTIONS -> V

V -> FUNCTION V

| lambda

fails because FUNCTIONS =/=>* lambda in the original grammar, and this will

permit just that.

#

gamma = lambda, beta = FUNCTION

(another hint this is the decomposition we want is that the base

rule was FUNCTIONS -> FUNCTION, and this often (not always) means

we want beta = FUNCTION)

FUNCTIONS -> FUNCTION V

V -> FUNCTION V

| lambda

FUNCTION -> C | P | H

C -> type id oparen CPARAMS cparen

P -> def id oparen PPARAMS cparen

H -> id dblcln type HPARAMS

__ candidate substitutions __ (new terminal U)

gamma = comma type, beta = id

CPARAMS -> id U

U -> comma type id U

| lambda

fails because it permits ... oparen id

whereas the original grammar requires ... oparen comma type id

gamma = comma, beta = type id

Page 7

Compilers Learning Group Assignment #16 LL(1) Limitations

CPARAMS -> type id U

U -> comma type id U

| lambda

fails because it permits ... oparen type id

whereas the original grammar requires ... oparen comma type id

gamma = lambda, beta = comma type id

CPARAMS -> comma type id U

U -> comma type id U

U | lambda

Fails as it has predict set conflicts for U

gamma = comma type id, beta = lambda

CPARAMS -> U

U -> comma type id U

| lambda

This works! And it hints a simpler re-write not requiring a U:

CPARAMS -> comma type id CPARAMS

| lambda

via much the same logic, a simple re-write for PARAMS is

PPARAMS -> comma id PPARAMS

| lambda

__ candidate substitutions __ (new terminal Q)

gamma = lambda, beta = rarrow type

HPARAMS -> rarrow type Q

Q -> rarrow type Q

| lambda

fails as it doesn’t permit HPARAMS =>* type

#

gamma = rarrow type, beta = lambda

HPARAMS -> Q

Q -> rarrow type Q

| lambda

fails as it permits HPARAMS =>* lambda

#

gamma = rarrow, beta = type

HPARAMS -> type Q

Q -> rarrow type Q

| lambda

Page 8

Compilers Learning Group Assignment #16 LL(1) Limitations

4. Write a CFG for a language with two terminals ({a,b}) that represents all non-empty strings that are palindromes.

Is your language LL(1)? If not can you refactor it using common prefix or left recursion refactoring so that it is?

Solution:

S → T $

T → a P a

| b P b

| a

| b

P → a P a

| b P b

| a

| b

| λ

p ∈ P Computed By Predict Set

1 S → T $ FirstSet(RHS) a, b

2 T → a P a FirstSet(RHS) a

3 T → b P b FirstSet(RHS) b

4 T → a FirstSet(RHS) a

5 T → b FirstSet(RHS) b

6 P → a P a FirstSet(RHS) a

7 P → b P b FirstSet(RHS) b

8 P → a FirstSet(RHS) a

9 P → b FirstSet(RHS) b

10 P → λ FollowSet(LHS) a, b

a b $

S 1 1

T ⋆ ⋆

P ⋆ ⋆

S → T $

T → a TA

| b T B

TA → P a

| λ

T B → P b

| λ

P → a PA

| b PB

| λ

PA → P a

| λ

PB → P b

| λ

p ∈ P Computed By Predict Set

1 S → T $ FirstSet(RHS) a, b

2 T → a TA FirstSet(RHS) a

3 T → b T B FirstSet(RHS) b

4 TA → P a FirstSet(RHS) a, b

5 TA → λ FollowSet(LHS) $

6 TB → P b FirstSet(RHS) a, b

7 TB → λ FollowSet(LHS) $

8 P → a PA FirstSet(RHS) a

9 P → b PB FirstSet(RHS) b

10 P → λ FollowSet(LHS) a, b

11 PA → P a FirstSet(RHS) a, b

12 PA → λ FollowSet(LHS) a, b

13 PB → P b FirstSet(RHS) a, b

14 PB → λ FollowSet(LHS) a, b

a b $

S 1 1

T 2 3

TA 4 4 5

T B 6 6 7

P ⋆ ⋆

PA ⋆ ⋆

PB ⋆ ⋆

Page 9

