Distribute the following questions across the members of your group. You will share your solutions (and most importantly the method of your solutions) during the next lecture period. Divide up the questions so that each question has at least two solutions from different group members.

Questions for Review

LGA 3: Are these all the same languages after refactoring? Are they interpreted the same?
LGA 4: Can the palindrome grammar be $\operatorname{LL}(k)$ for any k ?

1. Refactor the following grammars by consolidating the common prefixes until they are $\mathrm{LL}(1)$.
(a)

S	\rightarrow	a	b	c	d	e	$\$$
	\mid	a	b	c	q	y	z

(b)

START	\rightarrow	A	x	B

(c)

Add symbol H to resolve conflicts for S

$$
\begin{array}{rll}
S & \rightarrow & a b c
\end{array} \quad \$
$$

Add symbol J to resolve conflicts for H

$$
\rightarrow \quad J \quad \rightarrow \quad q J
$$

$$
\Rightarrow
$$

$$
\begin{aligned}
& S \rightarrow a b c H \$ \\
& \text { | TU\$ } \\
& H \rightarrow d e \\
& T \rightarrow x a b \\
& \mid \lambda \\
& U \quad \rightarrow \quad G z \\
& G \rightarrow d \\
& \text { | } q
\end{aligned}
$$

Solution: question 1 part c
Simple rote approach for B and C conflicts fails...

$\#$	Rules
1	$S T A R T \rightarrow S \$$
2	$S \rightarrow a S e$
3	$S \rightarrow B$
4	$B \rightarrow b a e B H$
5	$B \rightarrow a e C$
6	$H \rightarrow e$
7	$H \rightarrow g$
8	$C \rightarrow c c V$
9	$V \rightarrow C e$
10	$V \rightarrow B d$

S production rule conflicts for terminal a in $\operatorname{First}(B)$..

	a	b	c	d	e	g	\$
START	1	1					
S	\star	3					
B	5	4					
H					6	7	
C			8				
V	10	10	9				

Rewrite S

$$
B \quad \rightarrow \quad b a e B e
$$

$$
\text { | } \quad a e C
$$

$$
\quad b a e B g
$$

$$
C \rightarrow c c C e
$$

$$
\mid \quad c c B d
$$

$$
\begin{array}{rl}
\text { START } & \rightarrow \\
S & S
\end{array}
$$

Add symbols W and V to resolve conflicts for B and C
START $\rightarrow \quad S \$$
$S \rightarrow a T$
baeBU
$T \rightarrow \quad S e$
$\mid C$
$U \quad \rightarrow \quad e$
\Rightarrow
$B \quad \rightarrow \quad b$ a e $B W$
$\mid \quad a e C$
$W \rightarrow e$
$C \rightarrow \quad c c V$
$V \quad \rightarrow \quad C e$
| $B d$
2. ("Double coverage" for this question can be one group member doing the coding, and another doing the testing.) Incorporate the solution to question 3 of lga-ll1-parsing.pdf into your group's "grammar code"; test with parser-test.tok.cfg and input parser-test.tok - see also show_llparse-parser-test.tok.pdf.
3. Refactor these grammars' left-recursive rules to make the grammar LL(1) (some grammars may require common prefix refactoring as well).
(a)

(b)

S	\rightarrow	SUM \$
SUM	\rightarrow	SUM plus PROD
	\mid	$P R O D$
$P R O D$	\rightarrow	$P R O D$ mult POWER
	\mid	POWER
POWER	\rightarrow	val exp POWER
	\mid	val

(c)

```
    S }->\mathrm{ FUNCTIONS $
FUNCTIONS }->\mathrm{ FUNCTIONS FUNCTION
            | FUNCTION
FUNCTION }->\mathrm{ C
    |
        C type id oparen CPARAMS cparen
        P \rightarrow \text { def id oparen PPARAMS cparen}
        H }->\mathrm{ id dblcln type HPARAMS
    CPARAMS }->\mathrm{ CPARAMS comma type id
            |}
    PPARAMS }->\quad\mathrm{ PPARAMS comma id
            | \lambda
HPARAMS }->\mathrm{ HPARAMS rarrow type
type
```


Solution: question 3 part a

```
S -> Q R $
# "Q" thought process
# gamma = x, beta = Q y fails because the
# rewrite (with new terminal H) would be
# Q -> Q y H
# and we still have left-recursion :(
# gamma = x Q, beta = y fails because rewrite
# Q -> y H
# H -> x Q y H
# H | lambda
# would permit y x y ..., whereas the language permits
# sentences beginning with only x, r or s.
# gamma = lambda, beta = x Q y, new nt H
H -> x Q y H
    | lambda
# since beta =/=>* lambda,
# must retain the Q -> lambda rule
Q -> lambda
# "R" thought process
# We want _one_ recursive rule, so think of
# R -> R r s t U
# U -> x y | y y y
# now let gamma = r beta=s t U new nt V
R -> s t U V
V -> r s t U V
    | lambda
U -> x y | y y y
# We need to permit just R => s t but including
# this base case rule will create a predict set conflict :(
# But we can also permit R => s t by letting
U -> lambda
# The lambda rule for U also permits s t r s t x y,
# s t r s t x y y
```

$S \rightarrow Q R \$ \quad \#$ notice that with gamma = lambda,
$Q \rightarrow x Q$ y $\rightarrow \quad \#$ beta must begin with First $(Q)=\{\mathrm{x}\}$
$H \rightarrow x Q y H \quad Q \rightarrow \mathrm{x} Q \mathrm{y} \mathrm{H}$

```
Solution: question 3 part b
            S }->\mathrm{ SUM $
        SUM }->\mathrm{ PROD V
            V }->\mathrm{ plus PROD V
            | \lambda
    PROD }->\mathrm{ POWER U
            U }->\mathrm{ mult POWER U
            | \lambda
POWER }->\mathrm{ val W
        W }->\mathrm{ exp POWER
            | \lambda
S -> SUM $
# __ candidate substitutions __ (new terminal V)
gamma = lambda, beta = plus PROD
# SUM -> plus PROD V
# V -> plus PROD V
# V | lambda
fails because sentences begin with val ...,
& and this would permit plus val ...
#
gamma = plus PROD, beta = lambda
SUM -> V
V -> plus PROD V
| lambda
fails because it would not only permit sentences
# to begin with plus, bit it would also permit empty
# (lambda) sentences into the language
#
# (let's hope this works...)
# gamma = plus, beta = PROD
SUM -> PROD V
    V -> plus PROD V
        | lambda
# since V=>*lambda, we don't need a SUM -> PROD rule anymore.
# The logic for rewriting PROD non-terminals very much
# identical, the symbols simply change from SUM and PROD to
# PROD and POWER (re-written with new non-terminal U)
PROD -> POWER U
    U -> mult POWER U
        | lambda
# For completeness, we need to do common prefix refactoring
# to make this an LL(1) language, using new non-terminal W
POWER -> val W
    W -> exp POWER
        | lambda
```

```
Solution: question 3 part c
    \(S \rightarrow\) FUNCTIONS \$
FUNCTIONS \(\rightarrow\) FUNCTION \(V\)
            \(V \quad \rightarrow \quad\) FUNCTION \(V\)
                | \(\lambda\)
    FUNCTION \(\rightarrow C\)
                                | \(P\)
                | \(H\)
    \(C \rightarrow\) type id oparen CPARAMS cparen
    \(P \rightarrow\) def id oparen PPARAMS cparen
    \(H \rightarrow\) id dblcln type HPARAMS
    CPARAMS \(\rightarrow\) comma type id CPARAMS
        | \(\lambda\)
        PPARAMS \(\rightarrow\) comma id PPARAMS
        | \(\lambda\)
        HPARAMS \(\rightarrow\) type \(Q\)
            \(Q \rightarrow\) rarrow type \(Q\)
            | \(\lambda\)
S -> FUNCTIONS \$
\#
        candidate substitutions
```

\qquad

``` (new terminal V)
gamma \(=\) FUNCTION, beta \(=\) lambda
\# FUNCTIONS -> V
    V -> FUNCTION V
            | lambda
fails because FUNCTIONS =/=>* lambda in the original grammar, and this will
permit just that.
\#
gamma = lambda, beta = FUNCTION
(another hint this is the decomposition we want is that the base
\# rule was FUNCTIONS -> FUNCTION, and this often (not always) means
\# we want beta = FUNCTION)
FUNCTIONS -> FUNCTION V
    V -> FUNCTION V
                            | lambda
FUNCTION -> C | P | H
C -> type id oparen CPARAMS cparen
P -> def id oparen PPARAMS cparen
H -> id dblcln type HPARAMS
_ candidate substitutions _ (new terminal U)
\# gamma = comma type, beta = id
CPARAMS -> id U
    U -> comma type id U
            | lambda
fails because it permits ... oparen id
\# whereas the original grammar requires ... oparen comma type id
gamma = comma, beta = type id
```

```
# CPARAMS -> type id U
# U -> comma type id U
    | lambda
fails because it permits ... oparen type id
# whereas the original grammar requires ... oparen comma type id
# gamma = lambda, beta = comma type id
# CPARAMS -> comma type id U
# U -> comma type id U
# U | lambda
# Fails as it has predict set conflicts for U
# gamma = comma type id, beta = lambda
# CPARAMS -> U
# U -> comma type id U
| lambda
# This works! And it hints a simpler re-write not requiring a U:
CPARAMS -> comma type id CPARAMS
    | lambda
# via much the same logic, a simple re-write for PARAMS is
PPARAMS -> comma id PPARAMS
            | lambda
# _
    candidate substitutions _ (new terminal Q)
gamma = lambda, beta = rarrow type
# HPARAMS -> rarrow type Q
# Q -> rarrow type Q
| lambda
fails as it doesn't permit HPARAMS =>* type
#
gamma = rarrow type, beta = lambda
# HPARAMS -> Q
    Q -> rarrow type Q
            | lambda
fails as it permits HPARAMS =>* lambda
#
# gamma = rarrow, beta = type
HPARAMS -> type Q
    Q -> rarrow type Q
    | lambda
```

4. Write a CFG for a language with two terminals $(\{a, b\})$ that represents all non-empty strings that are palindromes. Is your language $\mathrm{LL}(1)$? If not can you refactor it using common prefix or left recursion refactoring so that it is?

Solution:

S	\rightarrow	T \$
T	\rightarrow	$a P a$
	\|	$b P b$
	\|	a
	\|	b
P	\rightarrow	$a P a$
		b P b
	\|	a
	\|	b
		λ

$\#$	$p \in P$	Computed By	Predict Set
1	$S \rightarrow T \$$	FirstSet $(R H S)$	a, b
2	$T \rightarrow a P a$	FirstSet $(R H S)$	a
3	$T \rightarrow b P b$	FirstSet $(R H S)$	b
4	$T \rightarrow a$	FirstSet $(R H S)$	a
5	$T \rightarrow b$	FirstSet $(R H S)$	b
6	$P \rightarrow a P a$	FirstSet $(R H S)$	a
7	$P \rightarrow b P b$	FirstSet $(R H S)$	b
8	$P \rightarrow a$	FirstSet $(R H S)$	a
9	$P \rightarrow b$	FirstSet $(R H S)$	b
10	$P \rightarrow \lambda$	FollowSet $($ LHS $)$	a, b

	a	b	$\$$
S	1	1	
T	\star	\star	
P	\star	\star	

S	\rightarrow	T	$\$$
T	\rightarrow	$a T A$	
	\mid	$b T B$	
$T A$	\rightarrow	$P a$	
	\mid	λ	
$T B$	\rightarrow	$P b$	
	\mid	λ	
P	\rightarrow	$a P A$	
	\mid	$b P B$	
$P A$	\rightarrow	P	
	\mid	λ	
$P B$	\rightarrow	P	

$\#$	$p \in P$	Computed By	Predict Set
1	$S \rightarrow T \$$	FirstSet $(R H S)$	a, b
2	$T \rightarrow a$ TA	FirstSet $(R H S)$	a
3	$T \rightarrow b T B$	FirstSet $(R H S)$	b
4	$T A \rightarrow P a$	FirstSet $(R H S)$	a, b
5	$T A \rightarrow \lambda$	FollowSet $(L H S)$	$\$$
6	$T B \rightarrow P b$	FirstSet $(R H S)$	a, b
7	$T B \rightarrow \lambda$	FollowSet $(L H S)$	$\mathrm{\$}$
8	$P \rightarrow a P A$	FirstSet $(R H S)$	a
9	$P \rightarrow b P B$	FirstSet $(R H S)$	b
10	$P \rightarrow \lambda$	FollowSet $(L H S)$	a, b
11	$P A \rightarrow P a$	FirstSet $(R H S)$	a, b
12	$P A \rightarrow \lambda$	FollowSet $(L H S)$	a, b
13	$P B \rightarrow P b$	FirstSet $(R H S)$	a, b
14	$P B \rightarrow \lambda$	FollowSet $(L H S)$	a, b

	a	b	\$
S	1	1	
T	2	3	
$T A$	4	4	5
$T B$	6	6	7
P	\star	\star	
$P A$	\star	\star	
$P B$	\star	\star	

