
Regular Language Limits

Write an RE (or ≡ DFA) for the sequence w containing an equal number of occurances of the

substring 01 and 10 (Σ = {0,1}). Alternatively, explain why it can’t be done.

For instance, 101 is in the language because it has one 10 and one 01, but 1010 is not (two 10s,

just one 01). λ, 111, and 00000 are also part of the language.



Regular Language Limits

Write an RE (or ≡ DFA) for the sequence w containing an equal number of occurances of the

substring 01 and 10 (Σ = {0,1}). Alternatively, explain why it can’t be done.

For instance, 101 is in the language because it has one 10 and one 01, but 1010 is not (two 10s,

just one 01). λ, 111, and 00000 are also part of the language.

Yes we can!

λ | 0
+(1+0

+)∗ | 1
+(0+1

+)∗

The insight here is that if we begin with a 0 (for

instance), then we must always see at least one 0

after 1
+ is encountered.

IOW: the first and last symbol must be the same.

0

1

0

1

1

0

1

0

0

1



Regular Language Limits

It’s tempting to feel the “equal number of” criteria prevents these patterns from being a regular

language. But in this case the patterns that are counted are not truely recursive — they overlap.

The 0 in 101 gets used in both the 10 count and the 01 count.

It is the arbitrary number of recursively nested structures that regular languages cannot describe.

In a real language theory class, we would be learning the pumping lemma. A mathematic tool that

can be used to show definitively whether a language is regular or not.

Yes we can!

λ | 0
+(1+0

+)∗ | 1
+(0+1

+)∗

The insight here is that if we begin with a 0 (for

instance), then we must always see at least one 0

after 1
+ is encountered.

IOW: the first and last symbol must be the same.

0

1

0

1

1

0

1

0

0

1


