Regular Language Limits

Write an RE (or \equiv DFA) for the sequence w containing an equal number of occurances of the substring 01 and $10(\Sigma=\{0,1\})$. Alternatively, explain why it can't be done.
For instance, 101 is in the language because it has one 10 and one 01, but 1010 is not (two 10s, just one 01). $\lambda, 111$, and 00000 are also part of the language.

Regular Language Limits

Write an RE (or $\equiv \mathrm{DFA}$) for the sequence w containing an equal number of occurances of the substring 01 and $10(\Sigma=\{0,1\})$. Alternatively, explain why it can't be done.
For instance, 101 is in the language because it has one 10 and one 01, but 1010 is not (two 10s, just one 01). $\lambda, 111$, and 00000 are also part of the language.

Yes we can!

$$
\lambda\left|0^{+}\left(1^{+} 0^{+}\right) *\right| 1^{+}\left(0^{+} 1^{+}\right) *
$$

The insight here is that if we begin with a 0 (for instance), then we must always see at least one 0 after 1^{+}is encountered.
IOW: the first and last symbol must be the same.

Regular Language Limits

It's tempting to feel the "equal number of" criteria prevents these patterns from being a regular language. But in this case the patterns that are counted are not truely recursive - they overlap. The 0 in 101 gets used in both the 10 count and the 01 count.

It is the arbitrary number of recursively nested structures that regular languages cannot describe. In a real language theory class, we would be learning the pumping lemma. A mathematic tool that can be used to show definitively whether a language is regular or not.

Yes we can!

$$
\lambda\left|0^{+}\left(1^{+} 0^{+}\right) *\right| 1^{+}\left(0^{+} 1^{+}\right) *
$$

The insight here is that if we begin with a 0 (for instance), then we must always see at least one 0 after 1^{+}is encountered.
IOW: the first and last symbol must be the same.

