procedure NFAtoDFA(N an NFA)

Let T[row|[col] be an empty transition table defining
D. Tlrow][] is uniquely identified by a set of
states from N, each T[][col] uniquely identifies

a character ceX.

let L be an empty stack
let A be the set of accepting states for N
let i be the starting state of N
B+ FollowLamda ({i})
initialize row TIB][]
mark T[B][] as the starting state of D
if (AN B#0) then (
mark T[B]|[] as an accepting state of D
)
push B onto L
repeat (
S< pop L
foreach (c€X) do (
R<+ FollowLambda (FollowChar (S,c))
T[S][c] < R
if (|R|>0 AND TIR|[] does not exist) then (
initialize row T[R|[]
if (AR #0) then (
mark T[R][] as an accepting state of D
)
push R onto L
)

)
) while ([L|>0)

T now defines a DFA D equivalent to N

procedure FollowLambda (§ a € of NFA N states)
returns the set of NFA states encountered by
recursively following only A transitions

from states in §

Let M be an empty stack
foreach (state r€S) push t onto M
while (|[M|>0) do (
t< pop M
foreach (A transition from ¢t to state g) do (
if (g¢S) then (
add g to S
push g onto M

)

return S

procedure FollowChar(§ a € of NFA N states, ceX)
returns the set of NFA states obtained from following
all ¢ transitions from states in S

Let F be an empty set
foreach (state t€S) do (
foreach (¢ transition from f to state g) do (
add g to F

return F

