
procedure NFAtoDFA(N an NFA)

Let T [row][col] be an empty transition table defining

D. T [row][·] is uniquely identified by a set of

states from N, each T [·][col] uniquely identifies

a character c ∈ Σ.

let L be an empty stack

let A be the set of accepting states for N

let i be the starting state of N

B← FollowLamda({i})

initialize row T [B][·]
mark T [B][·] as the starting state of D

if (A
⋂

B 6= /0) then (

mark T [B][·] as an accepting state of D

)

push B onto L

repeat (

S← pop L

foreach (c ∈ Σ) do (

R← FollowLambda(FollowChar(S,c))

T [S][c]← R

if (|R|> 0 AND T [R][·] does not exist) then (

initialize row T [R][·]
if (A

⋂
R 6= /0) then (

mark T [R][·] as an accepting state of D

)

push R onto L

)

)

) while (|L|> 0)

T now defines a DFA D equivalent to N

procedure FollowLambda (S a ⊆ of NFA N states)

returns the set of NFA states encountered by

recursively following only λ transitions

from states in S

Let M be an empty stack

foreach (state t ∈ S) push t onto M

while (|M|> 0) do (

t← pop M

foreach (λ transition from t to state q) do (

if (q /∈ S) then (

add q to S

push q onto M

)

)

)

return S

procedure FollowChar(S a ⊆ of NFA N states , c ∈ Σ)

returns the set of NFA states obtained from following

all c transitions from states in S

Let F be an empty set

foreach (state t ∈ S) do (

foreach (c transition from t to state q) do (

add q to F

)

)

return F

